21 research outputs found
Phenotypic Diversity and Altered Environmental Plasticity in Arabidopsis thaliana with Reduced Hsp90 Levels
The molecular chaperone HSP90 aids the maturation of a diverse but select set of metastable protein clients, many of which are key to a variety of signal transduction pathways. HSP90 function has been best investigated in animal and fungal systems, where inhibition of the chaperone has exceptionally diverse effects, ranging from reversing oncogenic transformation to preventing the acquisition of drug resistance. Inhibition of HSP90 in the model plant Arabidopsis thaliana uncovers novel morphologies dependent on normally cryptic genetic variation and increases stochastic variation inherent to developmental processes. The biochemical activity of HSP90 is strictly conserved between animals and plants. However, the substrates and pathways dependent on HSP90 in plants are poorly understood. Progress has been impeded by the necessity of reliance on light-sensitive HSP90 inhibitors due to redundancy in the A. thaliana HSP90 gene family. Here we present phenotypic and genome-wide expression analyses of A. thaliana with constitutively reduced HSP90 levels achieved by RNAi targeting. HSP90 reduction affects a variety of quantitative life-history traits, including flowering time and total seed set, increases morphological diversity, and decreases the developmental stability of repeated characters. Several morphologies are synergistically affected by HSP90 and growth temperature. Genome-wide expression analyses also suggest a central role for HSP90 in the genesis and maintenance of plastic responses. The expression results are substantiated by examination of the response of HSP90-reduced plants to attack by caterpillars of the generalist herbivore Trichoplusia ni. HSP90 reduction potentiates a more robust herbivore defense response. In sum, we propose that HSP90 exerts global effects on the environmental responsiveness of plants to many different stimuli. The comprehensive set of HSP90-reduced lines described here is a vital instrument to further examine the role of HSP90 as a central interface between organism, development, and environment
A comprehensive overview of radioguided surgery using gamma detection probe technology
The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology
BMI and Risk of Serious Upper Body Injury Following Motor Vehicle Crashes: Concordance of Real-World and Computer-Simulated Observations
Microfluidic system for monitoring temporal variations of hemorheological properties and platelet adhesion in LPS-injected rats
Sepsis causes multiple organs failures and eventually death. Changes in blood constituents due to sepsis lead to alterations in hemorheological properties, and cell adhesiveness. In this study, a new microfluidic system is proposed to measure temporal variations in biophysical properties of blood after injecting lipopolysaccharide (LPS) into a rat extracorporeal model under ex vivo condition. To measure blood viscosity, the interfacial line between blood and a reference fluid is formed in a Y-shaped channel. Based on the relation between interfacial width and pressure ratio, the temporal variation in blood viscosity is estimated. Optical images of blood flows are analyzed by decreasing flow rate for examination of red blood cell (RBC) aggregation. Platelets initiated by shear acceleration around the stenosis adhere to the post-stenosed region. By applying a correlation map that visualizes the decorrelation of the streaming blood flow, the area of adhered platelets can be quantitatively attained without labeling of platelets. To assess sepsis inflammation, conventional biomarkers (PCT and IL-8) are also monitored. The increasing tendency for blood viscosity, RBC aggregation, platelet adhesion, and septic biomarkers are observed after LPS injection. This microfluidic system would be beneficial for monitoring the changes in hemorheological properties and platelet activation caused by sepsis.Y
