14 research outputs found

    The mode of lymphoblastoid cell death in response to gas phase cigarette smoke is dose-dependent

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cigarette smoke (CS) is the main cause in the development of chronic obstructive pulmonary disease (COPD), the pathogenesis of which is related to an extended inflammatory response. In this study, we investigated the effect of low and high doses of gas phase cigarette smoke (GPS) on cultured lymphocyte progenitor cells, using techniques to assess cell viability and to elucidate whether cells die of apoptosis or necrosis upon exposure to different doses of GPS.</p> <p>Methods</p> <p>In our approach we utilised a newly-established system of exposure of cells to GPS that is highly controlled, accurately reproducible and simulates CS dosage and kinetics that take place in the smokers' lung. This system was used to study the mode of cell death upon exposure to GPS in conjunction with a range of techniques widely used for cell death studies such as Annexin V staining, activation of caspase -3, cytoplasmic release of cytochrome C, loss of mitochondrial membrane potential and DNA fragmentation.</p> <p>Results</p> <p>Low doses of GPS induced specific apoptotic indexes in CCRF-CEM cells. Specifically, cytochrome C release and cleaved caspase-3 were detected by immunofluorescence, upon treatment with 1-3 puffs GPS. At 4 h post-exposure, caspase-3 activation was observed in western blot analysis, showing a decreasing pattern as GPS doses increased. Concomitant with this behaviour, a dose-dependent change in Δψ<sub>m </sub>depolarization was monitored by flow cytometry 2 h post-exposure, while at 4 h Δψ<sub>m </sub>collapse was observed at the higher doses, indicative of a shift to a necrotic demise. A reduction in DNA fragmentation events produced by 5 puffs GPS as compared to those provoked by 3 puffs GPS, also pointed towards a necrotic response at the higher dose of GPS.</p> <p>Conclusion</p> <p>Collectively, our results support that at low doses gas phase cigarette smoke induces apoptosis in cultured T-lymphocytes, whereas at high doses GPS leads to necrotic death, by-passing the characteristic stage of caspase-3 activation and, thus, the apoptotic route.</p

    Alterations of nitric oxide synthase and xanthine oxidase activities of human keratinocytes by ultraviolet B radiation - Potential role for peroxynitrite in skin inflammation

    No full text
    In the present study, we demonstrated that NO synthase (cNOS) and xanthine oxidase (XO) of human keratinocytes can be activated to release NO, superoxide (O-2(-)) and peroxynitrite (ONOO-) following exposure to ultraviolet B (UVB) radiation. We defined that this photo induced response may be involved in the pathogenesis of sunburn erythema and inflammation. Treatment of human keratinocytes with UVB (290-320 nm) radiation (up to 200 mJ/cm(2)) resulted in a dose-dependent increase in NO and ONOO- release that was inhibited by N-monomethyl-L-arginine (L-NMMA). NO and ONOO- release from keratinocytes was accompanied by an increase in intracellular cGMP levels. Treatment of human keratinocyte cytosol with various doses of UVB (up to 100 mJ/cm(2)) resulted in an increase in XO activity that was inhibited by oxypurinol. UVB radiation (up to 100 mJ/cm(2)) of keratinocytes resulted in a 15-fold increase in S-nitrosothiol formation, which directly increased purified soluble guanylate cyclase (sGC) activity by a mechanism characteristic of release of NO from a carrier molecule. In reconstitution experiments, when UVB-irradiated (20 mJ/cm(2)) purified cNOS isolated from keratinocyte cytosol was combined with UVB-irradiated (20 mJ/cm(2)) purified XO, a 4-fold increase in ONOO- production, as compared to nonirradiated enzymes, was observed. ONOO- synthesized by NO and O-2(-) following UVB radiation of cNOS and XO was inhibited by oxypurinol (100 mu M) UVB radiation of keratinocyte cytosol resulted in an increase in oxygen free radical production, consistent with the increased production of ONOO- by UVB-irradiated keratinocyte cytosol. In in vivo experiments, when experimental animals were subjected to UVB radiation, a protection factor (PF) of 6.5 +/- 1.8 was calculated when an emulsified cream formulation containing nitro-L-arginine (L-NA) (2%) and L-NMMA (2%) was applied to their skin. The present study indicates that UVB radiation acts as a potent stimulator of cNOS and XO activities in human keratinocytes. NO and ONOO- may exert cytotoxic effects in keratinocytes themselves, as well as in their neighboring endothelial and smooth muscle cells. This may be a major part of the integrated response leading to erythema production and the inflammation process

    Increase of particulate nitric oxide synthase activity and peroxynitrite synthesis in UVB-irradiated keratinocyte membranes

    No full text
    Here we demonstrate that human keratinocytes possess a Ca2+/calmodulin-dependent particulate NO synthase that can be activated to release NO after exposure to WE radiation. UVB irradiation (up to 20 mJ/cm(2)) of human keratinocyte plasma membranes resulted in a dose-dependent increase in NO and L-[H-3]citrulline production that was inhibited by approx. 90% in the presence of N-monomethyl-L-arginine (L-NMMA). In time-course experiments with UVB-irradiated plasma membranes the changes in NO production were followed by analogous changes in soluble guanylate cyclase (sGC) activity. In reconstitution experiments, when particulate NO synthase was added to purified sGC isolated from keratinocyte cytosol, a 4-fold increase in cGMP was observed; the cGMP was increased by NO synthesized after UVB irradiation (up to 20 mJ/cm(2)) of particulate NO synthase. A 5-fold increase in superoxide (O-2(-)) and a 7-fold increase in NO formation followed by an 8-fold increase in peroxynitrite (ONOO-) production by UVB (20 mJ/cm(2))-irradiated keratinocyte microsomes was observed. UVB radiation (20 mJ/cm(2)) decreased plasma membrane lipid fluidity as indicated by steady-state fluorescence anisotropy. Membrane fluidity changes were prevented by L-NMMA. Changes in Arrhenius plots of particulate NO synthase in combination with changes in its allosteric properties induced by UVB radiation are consistent with a decreased fluidity of the lipid microenvironment of the enzyme. The present studies provide important new clues to the role of NO and ONOO- released by UVB-irradiated human keratinocytes in skin erythema and inflammation

    MODULATION OF PARTICULATE NITRIC-OXIDE SYNTHASE ACTIVITY AND PEROXYNITRITE SYNTHESIS IN CHOLESTEROL-ENRICHED ENDOTHELIAL-CELL MEMBRANES

    No full text
    Endothelium-derived relaxing factor/nitric oxide (EDRF/NO) is produced by the vascular wall and is a key modulator of vascular tone and blood pressure. Since reduced EDRF/NO release from the endothelium is a major key event in the development of atherosclerosis, we investigated the effect of cholesterol on endothelial cell particulate (membrane-bound) NO synthase activity. Low concentrations (up to 0.2 mM) of liposomal cholesterol progressively activated plasma membrane-bound NO synthase. Increasing cholesterol concentration above that which maximally stimulated enzyme activity produced a progressive inhibition with respect to the control value. In time course experiments using endothelial cell plasma membranes enriched with cholesterol, changes in NO production were followed by analogous changes in soluble guanylate cyclase activity (sGC). N-Monomethyl-L-arginine (L-NMMA) (1 mM) inhibited particulate NO synthase activity at all cholesterol concentrations used with subsequent decreases in cGMP production. Egg lecithin liposomes (free of cholesterol) had no effect on NO synthase activity. A three-fold increase in superoxide (O-2(-)) and a 2.5-fold increase in NO formation followed by an eight-fold increase in peroxynitrite (ONOO-) production by cholesterol-treated microsomes isolated from endothelial cells was observed, one which rose further up to eight-fold in the presence of superoxide dismutase (SOD) (10 U/mL). Cholesterol had no effect on Lubrol-PX solubilized membrane-bound NO synthase or on cytosolic (soluble) NO synthase activities of endothelial cells. Cholesterol modulated lipid fluidity of plasma membranes labelled with 1,6-diphenyl-1,3,5-hexatriene (DPH) as indicated by the steady state fluorescence anisotropy [(r(o)/r)-1](-1). Arrhenius plots of [(r(o)/r)- 1](-1) indicated that the lipid phase separation of the membranes at 26.2 +/- 1.5 degrees was elevated to 34.4 +/- 1.9 degrees in cholesterol-enriched membranes, consistent with a general decrease in membrane fluidity. Cholesterol-enriched plasma membranes treated with egg lecithin liposomes showed a lipid phase separation at 27.5 +/- 1.6 degrees, indicating the reversible effect of cholesterol on membrane lipid fluidity. Arrhenius plots of NO synthase activity exhibited break point at 26.9 +/- 1.8 degrees which rose to 35.6 +/- 2.1 degrees in 0.5 mM cholesterol-treated plasma membranes and decreased to 21.5 +/- 1.4 degrees in plasma membranes treated with 0.2 mM cholesterol. The allosteric properties of plasma membrane-bound NO synthase inhibited by Mn2+ (as reflected by changes in the Hill coefficient) were changed by cholesterol, consistent with modulations of the fluidity of the lipid microenvironment of the enzyme. Our findings suggest that incorporation of high concentrations of cholesterol into endothelial cell membranes causes down-regulation of NO synthase by producing an increased packing of bulk lipids. In contrast, cholesterol incorporation at low concentrations up-regulates NO synthase by increasing the fluidity of the lipid microenvironment of the enzyme. The present studies concerning the behaviour of particulate NO synthase and rate of NO release with respect to the structure and function of the biomembranes provide important new clues as to the role of this fascinating molecule in atherosclerosis

    Inhibition of ultraviolet B-induced skin erythema by N-nitro-L-arginine and N-monomethyl-L-arginine

    No full text
    Ultraviolet B (UVB)-irradiated human keratinocytes and human endothelial cells release nitrogen oxides, i.e. nitric oxide (NO), S-nitrosothiols, hydroxylamine (H2NOH) as well as ammonia (NH3) formed from L-arginine. Generation of these compounds was time and concentration-dependent and decreased by both N-monomethyl-L-arginine (L-NMMA) and N-nitro-L-arginine (L-NA). WE radiation of the cells resulted in a concomitant increase of soluble guanylate cyclase (sGC) activity which was inhibited by L-NMMA and L-NA. S-nitrosothiols formed during the irradiation of the cells directly increased purified sGC activity by a mechanism characteristic of release of NO from a carried molecule. WE-irradiated cells promptly increased thiobarbituric acid reacting substance (TEARS) (estimated as malondialdehyde, MDA) production which were inhibited by desferrioxamine. In in vivo experiments using guinea pigs subjected to WE radiation, a Protection Factor (PF) of 2.25 +/- 0.75 was calculated when an emulsified cream formulation containing L-NMMA (1% w/w) and L-NA (1% w/w) was applied to their skin. In human volunteers subjected to UVB radiation a dose-dependent increase of PF was observed. When an emulsified cream formulation containing L-NMMA (1% w/w) and L-NA (1% w/w) was applied to their skin the PF was 2.15 +/- 0.80; by increasing the concentration of L-NMMA (2% w/w) and L-NA (2% w/w) the PF was 4.25 +/- 1.25. The present results indicate that WE radiation acts as a potent stimulator of human keratinocytes and endothelial cells to release nitrogen oxides that may diffuse out of the keratinocytes and endothelial cells, activating sGC in neighboring smooth muscle cells. This may be a major part of the integrated response of the skin leading to vasodilation and erythema. (C) 1997 Elsevier Science Ireland Ltd

    MET-ENKEPHALIN RECEPTOR-MEDIATED INCREASE OF MEMBRANE FLUIDITY MODULATES NITRIC-OXIDE (NO) AND CGMP PRODUCTION IN RAT-BRAIN SYNAPTOSOMES

    No full text
    The association of [H-3]-Met-enkephalin with synaptosomes isolated from rat brain cortex, when incubated for 30 min at 25 degrees C follows a sigmoid path with a Hill coefficient h = 1.25 +/- 0.04. Binding of Met-enkephalin into synaptosomes was saturable, with an apparent binding constant of 8.33 +/- 0.48 nM. At saturation, Met-enkephalin specific receptors corresponded to 65.5 +/- 7.2 nmol/mg synaptosomal protein. The Hill plot in combination with the biphasic nature of the curve to obtain the equilibrium constant, showed a moderate degree of positive cooperativity in the binding of Met-enkephalin into synaptosomes of at least one class of high affinity specific receptors. Met-enkephalin increased the lipid fluidity of synaptosomal membranes labelled with 1,6-diphenyl-1,3,5-hexatriene (DPH), as indicated by the steady-state fluorescence anisotropy [(r(o)/r) - 1](-1). Arrhenius-type plots of [(r(o)/r) - 1](-1) indicated that the lipid separation of the synaptosomal membranes at 23.4 +/- 1.2 degrees C was perturbed by Met-enkephalin such that the temperature was reduced to 15.8 +/- 0.8 degrees C. Naloxone reversed the fluidizing effect of Met-enkephalin, consistent with the receptor-mediated modulation of membrane fluidity. Naloxone alone had no effect on membrane fluidity. NO release and cGMP production by NO-synthase (NOS) and soluble guanylate cyclase (sGC), both located in the soluble fraction of synaptosomes (synaptosol) were decreased by 82% and 80% respectively, after treatment of synaptosomes with Met-enkephalin (10(-10) - 10(-4) M). These effects were reversed by naloxone (10(-4) M) which alone was ineffective in changing NO and cGMP production. We propose that Met-enkephalin achieved these effects through receptor mediated perturbations of membrane lipid structure and that inhibition of the L-Arg/NO/cGMP pathway in the brain may result in the antinociceptive effects of Met-enkephalin

    Early Ottoman Diplomacy: Ad Hoc Period

    No full text

    Investigation of heavy metal content of Turkish tobacco leaves, cigarette butt, ash, and smoke

    No full text
    WOS: 000325116500053PubMed ID: 23712460A procedure for the determination of cadmium, copper, manganese, and zinc in Turkish tobaccos, which were of different origins, years, and grades, and in the butt, ash, and smoke, which were obtained by smoking the cigarettes that were prepared manually from the said tobaccos in a smoking apparatus, was devised as proposed. The collected samples were digested by wet ashing technique by using HNO3-HClO4 and were analyzed by flame atomic absorption spectrometry with satisfactory recoveries (94 % to 98 %). The regression coefficients were above 0.99, and the detection limits were in the range of 0.03-0.12 mg/L-1. The performance and accuracy of the method was tested by analyzing "Certified Reference Material GBW 08501-Peach Leaves." The determined values were in agreement with the standard values for the heavy metals analyzed. Thus, it was concluded that the developed method could offer a wide range of application for establishing a relationship between the makeup and composition of tobacco plant, products, ash, smoke, and smoking
    corecore