105 research outputs found

    Glycosylation of mucins present in gastric juice: the effect of helicobacter pylori eradication treatment

    Get PDF
    It is suggested that gastric mucins, and in particular some specific glycan structures that can act as carbohydrate receptors, are involved in the interactions with Helicobacter pylori adhesins. The main aim of our study was to evaluate glycosylation pattern of glycoproteins of gastric juice before and at the end of eradication therapy. Gastric juices were taken from 13 clinical patients and subjected to analysis. Pooled fractions of the void volume obtained after gel filtration were subjected to ELISA tests. To assess the relative amounts of carbohydrate structures, lectins and monoclonal antibodies were used. Changes in the level of MUC 1 and MUC 5AC mucins and of carbohydrate structures, which are suggested to be receptors for Helicobacter pylori adhesins, were observed by the end of the eradication treatment. Our results support the idea about the involvement of MUC 5AC and MUC 1 with some specific sugar structures in the mechanism of Helicobacter pylori infection

    Transcriptome Responses of Insect Fat Body Cells to Tissue Culture Environment

    Get PDF
    Tissue culture is performed to maintain isolated portions of multicellular organisms in an artificial milieu that is outside the individual organism and for considerable periods of time; cells derived from cultured explants are, in general, different from cells of the corresponding tissue in a living organism. The changes in cultured tissues that precede and often explain the subsequent cell proliferation of explant-derived cells have been partially studied, but little is known about the molecular and genomic basis of these changes. Comparative transcriptomics of intact and cultured (90 hours in MGM-450 insect medium) Bombyx mori tissues revealed that fewer genes represented a larger portion of the transcriptome of intact fat body tissues than of cultured fat body tissues. This analysis also indicated that expression of genes encoding sugar transporters and immune response proteins increased during culture and that expression of genes encoding lipoproteins and cuticle proteins decreased during culture. These results provide support for hypotheses that cultured tissues respond immunologically to surgery, adapt to the medium by accelerating sugar uptake, and terminate their identity as part of an intact organism by becoming independent of that organism

    Human Gastric Mucins Differently Regulate Helicobacter pylori Proliferation, Gene Expression and Interactions with Host Cells

    Get PDF
    Helicobacter pylori colonizes the mucus niche of the gastric mucosa and is a risk factor for gastritis, ulcers and cancer. The main components of the mucus layer are heavily glycosylated mucins, to which H. pylori can adhere. Mucin glycosylation differs between individuals and changes during disease. Here we have examined the H. pylori response to purified mucins from a range of tumor and normal human gastric tissue samples. Our results demonstrate that mucins from different individuals differ in how they modulate both proliferation and gene expression of H. pylori. The mucin effect on proliferation varied significantly between samples, and ranged from stimulatory to inhibitory, depending on the type of mucins and the ability of the mucins to bind to H. pylori. Tumor-derived mucins and mucins from the surface mucosa had potential to stimulate proliferation, while gland-derived mucins tended to inhibit proliferation and mucins from healthy uninfected individuals showed little effect. Artificial glycoconjugates containing H. pylori ligands also modulated H. pylori proliferation, albeit to a lesser degree than human mucins. Expression of genes important for the pathogenicity of H. pylori (babA, sabA, cagA, flaA and ureA) appeared co-regulated in response to mucins. The addition of mucins to co-cultures of H. pylori and gastric epithelial cells protected the viability of the cells and modulated the cytokine production in a manner that differed between individuals, was partially dependent of adhesion of H. pylori to the gastric cells, but also revealed that other mucin factors in addition to adhesion are important for H. pylori-induced host signaling. The combined data reveal host-specific effects on proliferation, gene expression and virulence of H. pylori due to the gastric mucin environment, demonstrating a dynamic interplay between the bacterium and its host

    Muc5b Is the Major Polymeric Mucin in Mucus from Thoroughbred Horses With and Without Airway Mucus Accumulation

    Get PDF
    Mucus accumulation is a feature of inflammatory airway disease in the horse and has been associated with reduced performance in racehorses. In this study, we have analysed the two major airways gel-forming mucins Muc5b and Muc5ac in respect of their site of synthesis, their biochemical properties, and their amounts in mucus from healthy horses and from horses with signs of airway mucus accumulation. Polyclonal antisera directed against equine Muc5b and Muc5ac were raised and characterised. Immunohistochemical staining of normal equine trachea showed that Muc5ac and Muc5b are produced by cells in the submucosal glands, as well as surface epithelial goblet cells. Western blotting after agarose gel electrophoresis of airway mucus from healthy horses, and horses with mucus accumulation, was used to determine the amounts of these two mucins in tracheal wash samples. The results showed that in healthy horses Muc5b was the predominant mucin with small amounts of Muc5ac. The amounts of Muc5b and Muc5ac were both dramatically increased in samples collected from horses with high mucus scores as determined visually at the time of endoscopy and that this increase also correlated with increase number of bacteria present in the sample. The change in amount of Muc5b and Muc5ac indicates that Muc5b remains the most abundant mucin in mucus. In summary, we have developed mucin specific polyclonal antibodies, which have allowed us to show that there is a significant increase in Muc5b and Muc5ac in mucus accumulated in equine airways and these increases correlated with the numbers of bacteria

    Adult Type 3 Adenylyl Cyclase–Deficient Mice Are Obese

    Get PDF
    Background: A recent study of obesity in Swedish men found that polymorphisms in the type 3 adenylyl cyclase (AC3) are associated with obesity, suggesting the interesting possibility that AC3 may play a role in weight control. Therefore, we examined the weight of AC3 mice over an extended period of time. Methodology/Principal Findings: We discovered that AC3 2/2 mice become obese as they age. Adult male AC3 2/2 mice are about 40 % heavier than wild type male mice while female AC3 2/2 are 70 % heavier. The additional weight of AC3 2/2 mice is due to increased fat mass and larger adipocytes. Before the onset of obesity, young AC3 2/2 mice exhibit reduced physical activity, increased food consumption, and leptin insensitivity. Surprisingly, the obesity of AC3 2/2 mice is not due to a loss of AC3 from white adipose and a decrease in lipolysis. Conclusions/Significance: We conclude that mice lacking AC3 exhibit obesity that is apparently caused by low locomotor activity, hyperphagia, and leptin insensitivity. The presence of AC3 in primary cilia of neurons of the hypothalamus suggests that cAMP signals generated by AC3 in the hypothalamus may play a critical role in regulation of body weight
    corecore