28 research outputs found

    The N-Terminal Domain of ERK1 Accounts for the Functional Differences with ERK2

    Get PDF
    The Extracellular Regulated Kinase 1 and 2 transduce a variety of extracellular stimuli regulating processes as diverse as proliferation, differentiation and synaptic plasticity. Once activated in the cytoplasm, ERK1 and ERK2 translocate into the nucleus and interact with nuclear substrates to induce specific programs of gene expression. ERK1/2 share 85% of aminoacid identity and all known functional domains and thence they have been considered functionally equivalent until recent studies found that the ablation of either ERK1 or ERK2 causes dramatically different phenotypes. To search a molecular justification of this dichotomy we investigated whether the different functions of ERK1 and 2 might depend on the properties of their cytoplasmic-nuclear trafficking. Since in the nucleus ERK1/2 is predominantly inactivated, the maintenance of a constant level of nuclear activity requires continuous shuttling of activated protein from the cytoplasm. For this reason, different nuclear-cytoplasmic trafficking of ERK1 and 2 would cause a differential signalling capability. We have characterised the trafficking of fluorescently tagged ERK1 and ERK2 by means of time-lapse imaging in living cells. Surprisingly, we found that ERK1 shuttles between the nucleus and cytoplasm at a much slower rate than ERK2. This difference is caused by a domain of ERK1 located at its N-terminus since the progressive deletion of these residues converted the shuttling features of ERK1 into those of ERK2. Conversely, the fusion of this ERK1 sequence at the N-terminus of ERK2 slowed down its shuttling to a similar value found for ERK1. Finally, computational, biochemical and cellular studies indicated that the reduced nuclear shuttling of ERK1 causes a strong reduction of its nuclear phosphorylation compared to ERK2, leading to a reduced capability of ERK1 to carry proliferative signals to the nucleus. This mechanism significantly contributes to the differential ability of ERK1 and 2 to generate an overall signalling output

    Impact of Anti-Inflammatory Agents on the Gene Expression Profile of Stimulated Human Neutrophils: Unraveling Endogenous Resolution Pathways

    Get PDF
    Adenosine, prostaglandin E2, or increased intracellular cyclic AMP concentration each elicit potent anti-inflammatory events in human neutrophils by inhibiting functions such as phagocytosis, superoxide production, adhesion and cytokine release. However, the endogenous molecular pathways mediating these actions are poorly understood. In the present study, we examined their impact on the gene expression profile of stimulated neutrophils. Purified blood neutrophils from healthy donors were stimulated with a cocktail of inflammatory agonists in the presence of at least one of the following anti-inflammatory agents: adenosine A2A receptor agonist CGS 21680, prostaglandin E2, cyclic-AMP-elevating compounds forskolin and RO 20-1724. Total RNA was analyzed using gene chips and real-time PCR. Genes encoding transcription factors, enzymes and regulatory proteins, as well as secreted cytokines/chemokines showed differential expression. We identified 15 genes for which the anti-inflammatory agents altered mRNA levels. The agents affected the expression profile in remarkably similar fashion, suggesting a central mechanism limiting cell activation. We have identified a set of genes that may be part of important resolution pathways that interfere with cell activation. Identification of these pathways will improve understanding of the capacity of tissues to terminate inflammatory responses and contribute to the development of therapeutic strategies based on endogenous resolution

    Resistance to TRK inhibition mediated by convergent MAPK pathway activation

    No full text
    TRK fusions are found in a variety of cancer types, lead to oncogenic addiction, and strongly predict tumor-agnostic efficacy of TRK inhibition(1-8). With the recent approval of the first selective TRK inhibitor, larotrectinib, for patients with any TRK-fusion-positive adult or pediatric solid tumor, to identify mechanisms of treatment failure after initial response has become of immediate therapeutic relevance. So far, the only known resistance mechanism is the acquisition of on-target TRK kinase domain mutations, which interfere with drug binding and can potentially be addressable through second-generation TRK inhibitors(9-11). Here, we report off-target resistance in patients treated with TRK inhibitors and in patient-derived models, mediated by genomic alterations that converge to activate the mitogen-activated protein kinase (MAPK) pathway. MAPK pathway-directed targeted therapy, administered alone or in combination with TRK inhibition, re-established disease control. Experimental modeling further suggests that upfront dual inhibition of TRK and MEK may delay time to progression in cancer types prone to the genomic acquisition of MAPK pathway-activating alterations. Collectively, these data suggest that a subset of patients will develop off-target mechanisms of resistance to TRK inhibition with potential implications for clinical management and future clinical trial design
    corecore