28 research outputs found

    Aconitase Regulation of Erythropoiesis Correlates with a Novel Licensing Function in Erythropoietin-Induced ERK Signaling

    Get PDF
    Erythroid development requires the action of erythropoietin (EPO) on committed progenitors to match red cell output to demand. In this process, iron acts as a critical cofactor, with iron deficiency blunting EPO-responsiveness of erythroid progenitors. Aconitase enzymes have recently been identified as possible signal integration elements that couple erythropoiesis with iron availability. In the current study, a regulatory role for aconitase during erythropoiesis was ascertained using a direct inhibitory strategy.In C57BL/6 mice, infusion of an aconitase active-site inhibitor caused a hypoplastic anemia and suppressed responsiveness to hemolytic challenge. In a murine model of polycythemia vera, aconitase inhibition rapidly normalized red cell counts, but did not perturb other lineages. In primary erythroid progenitor cultures, aconitase inhibition impaired proliferation and maturation but had no effect on viability or ATP levels. This inhibition correlated with a blockade in EPO signal transmission specifically via ERK, with preservation of JAK2-STAT5 and Akt activation. Correspondingly, a physical interaction between ERK and mitochondrial aconitase was identified and found to be sensitive to aconitase inhibition.Direct aconitase inhibition interferes with erythropoiesis in vivo and in vitro, confirming a lineage-selective regulatory role involving its enzymatic activity. This inhibition spares metabolic function but impedes EPO-induced ERK signaling and disturbs a newly identified ERK-aconitase physical interaction. We propose a model in which aconitase functions as a licensing factor in ERK-dependent proliferation and differentiation, thereby providing a regulatory input for iron in EPO-dependent erythropoiesis. Directly targeting aconitase may provide an alternative to phlebotomy in the treatment of polycythemia vera

    Astrocytes express Mxi2, a splice isoform of p38MAPK

    No full text
    Mitogen-activated protein kinases (MAPKs) are a superfamily of cytoplasmic serine/threonine kinases that transduce many types of extracellular stimuli into cellular responses. p38MAPK is a member of this family with its active form in a diphosphorylated state (p38MAPKdiP). Two strong anti-p38MAPKdiP immunoreactive bands (apparent molecular weight 38 and 34 kDa) were detected by Western blotting in cultured astrocytes. Using a specific antibody and employing immunoprecipitation procedures and SELDI-TOF analysis, the 34 kDa band was found to correspond to Mxi2, a splice variant of p38MAPK; cultured astrocytes therefore express Mxi2. Separate protein extractions of different subcellular fractions, and fluorescent immunovisualisation employing confocal microscopy, showed Mxi2 to have a non-nuclear, cytosolic distribution in the studied cells. ERK1/2, protein whose intracellular distribution is influenced by Mxi2, showed the same cytoplasmic pattern than Mxi2

    Biglycan is a new extracellular component of the Chordin–BMP4 signaling pathway

    No full text
    The BMP4 signaling pathway plays key roles during early embryonic development and for maintenance of adult homeostasis. In the extracellular space, BMP4 activity is regulated by a group of interacting molecules including the BMP antagonist Chordin, the metalloproteinase Tolloid and Twisted gastrulation (Tsg). In this study, we identified Biglycan (Bgn), a member of the small leucine-rich proteoglycan family, as a new extracellular modulator of BMP4 signaling. Xenopus Bgn (xBgn) is expressed uniformly in the ectoderm and mesoderm and their derivatives during development. Microinjection of Bgn mRNA induced secondary axes, dorsalized the mesoderm and inhibited BMP4 activity in Xenopus embryos. Biochemical experiments showed that Bgn binds BMP4 and Chordin, interaction that increased binding of BMP4 to Chordin. Bgn was also able to improve the efficiency of Chordin–Tsg complexes to block BMP4 activity. Using antisense morpholinos, we demonstrated that Bgn required Chordin to induce double axes in Xenopus. This work unveiled a new function for Bgn, its ability to regulate BMP4 signaling through modulation of Chordin anti-BMP4 activity

    Diaphragm adaptations in patients with COPD.

    Get PDF
    Contains fulltext : 70068.pdf ( ) (Open Access)Inspiratory muscle weakness in patients with COPD is of major clinical relevance. For instance, maximum inspiratory pressure generation is an independent determinant of survival in severe COPD. Traditionally, inspiratory muscle weakness has been ascribed to hyperinflation-induced diaphragm shortening. However, more recently, invasive evaluation of diaphragm contractile function, structure, and biochemistry demonstrated that cellular and molecular alterations occur, of which several can be considered pathologic of nature. Whereas the fiber type shift towards oxidative type I fibers in COPD diaphragm is regarded beneficial, rendering the overloaded diaphragm more resistant to fatigue, the reduction of diaphragm fiber force generation in vitro likely contributes to diaphragm weakness. The reduced diaphragm force generation at single fiber level is associated with loss of myosin content in these fibers. Moreover, the diaphragm in COPD is exposed to oxidative stress and sarcomeric injury. This review postulates that the oxidative stress and sarcomeric injury activate proteolytic machinery, leading to contractile protein wasting and, consequently, loss of force generating capacity of diaphragm fibers in patients with COPD. Interestingly, several of these presumed pathologic alterations are already present early in the course of the disease (GOLD I/II), although these patients appear not limited in their daily life activities. Treatment of diaphragm dysfunction in COPD is complex since its etiology is unclear, but recent findings indicate the ubiquitin-proteasome pathway as a prime target to attenuate diaphragm wasting in COPD
    corecore