19 research outputs found

    Foraging behaviour of Adelie penguins over the annual cycle

    Get PDF
    第4回極域科学シンポジウム個別セッション:[OB] 生物圏11月12日(火) 国立国語研究所 2階講

    Bryostatin Modulates Latent HIV-1 Infection via PKC and AMPK Signaling but Inhibits Acute Infection in a Receptor Independent Manner

    Get PDF
    HIV's ability to establish long-lived latent infection is mainly due to transcriptional silencing in resting memory T lymphocytes and other non dividing cells including monocytes. Despite an undetectable viral load in patients treated with potent antiretrovirals, current therapy is unable to purge the virus from these latent reservoirs. In order to broaden the inhibitory range and effectiveness of current antiretrovirals, the potential of bryostatin was investigated as an HIV inhibitor and latent activator. Bryostatin revealed antiviral activity against R5- and X4-tropic viruses in receptor independent and partly via transient decrease in CD4/CXCR4 expression. Further, bryostatin at low nanomolar concentrations robustly reactivated latent viral infection in monocytic and lymphocytic cells via activation of Protein Kinase C (PKC) -α and -δ, because PKC inhibitors rottlerin and GF109203X abrogated the bryostatin effect. Bryostatin specifically modulated novel PKC (nPKC) involving stress induced AMP Kinase (AMPK) inasmuch as an inhibitor of AMPK, compound C partially ablated the viral reactivation effect. Above all, bryostatin was non-toxic in vitro and was unable to provoke T-cell activation. The dual role of bryostatin on HIV life cycle may be a beneficial adjunct to the treatment of HIV especially by purging latent virus from different cellular reservoirs such as brain and lymphoid organs

    Quantitative method to estimate species habitat use from light-based geolocation data

    No full text

    A space oddity: Geographic and specific modulation of migration in Eudyptes penguins

    Get PDF
    Post-breeding migration in land-based marine animals is thought to offset seasonal deterioration in foraging or other important environmental conditions at the breeding site. However the inter-breeding distribution of such animals may reflect not only their optimal habitat, but more subtle influences on an individual’s migration path, including such factors as the intrinsic influence of each locality’s paleoenvironment, thereby influencing animals’ wintering distribution. In this study we investigated the influence of the regional marine environment on the migration patterns of a poorly known, but important seabird group. We studied the inter-breeding migration patterns in three species of Eudyptes penguins (E. chrysolophus, E. filholi and E. moseleyi), the main marine prey consumers amongst the World’s seabirds. Using ultra-miniaturized logging devices (light-based geolocators) and satellite tags, we tracked 87 migrating individuals originating from 4 sites in the southern Indian Ocean (Marion, Crozet, Kerguelen and Amsterdam Islands) and modelled their wintering habitat using the MADIFA niche modelling technique. For each site, sympatric species followed a similar compass bearing during migration with consistent species-specific latitudinal shifts. Within each species, individuals breeding on different islands showed contrasting migration patterns but similar winter habitat preferences driven by sea-surface temperatures. Our results show that inter-breeding migration patterns in sibling penguin species depend primarily on the site of origin and secondly on the species. Such site-specific migration bearings, together with similar wintering habitat used by parapatrics, support the hypothesis that migration behaviour is affected by the intrinsic characteristics of each site. The paleo-oceanographic conditions (primarily, sea-surface temperatures) when the populations first colonized each of these sites may have been an important determinant of subsequent migration patterns. Based on previous chronological schemes of taxonomic radiation and geographical expansion of the genus Eudyptes, we propose a simple scenario to depict the chronological onset of contrasting migration patterns within this penguin group

    Feeding and foraging ecology of Trindade petrels Pterodroma arminjoniana during the breeding period in the South Atlantic Ocean

    No full text
    Seabirds breeding in tropical environments experience high energetic demands, when foraging in an oligotrophic environment. The globally threatened Trindade petrel Pterodroma arminjoniana has its largest colony in Trindade Island (20°30′S–29°19′W) inside the oligotrophic South Atlantic Subtropical Gyre. Diet sampling methods, geolocator tracking and stable isotope analysis were used to describe its diet, compare foraging trips and distributions, and assess temporal variations in the trophic niche throughout the breeding period. Diet consisted mainly of squid and fish. The high species diversity and wide range of prey sizes consumed suggests the use of multiple foraging techniques. Stable isotope mixing models confirm that Trindade petrels rely mainly on squid throughout the breeding period. Its broad isotopic niche seems to reflect both a diverse diet and foraging range, since birds can reach up to 3335 km from the colony. Isotopic niche showed limited variation even in an 8-year interval, apparently due to oceanographic stability, although changes in the isotopic niche have demonstrated an adjustment to different conditions in different seasons. Petrels change foraging areas and prey during the breeding period: pre-incubating birds use more productive areas west of Trindade Island and obtain low trophic position prey; incubating petrels perform longer trips southward to consume prey of high trophic position; and chick-rearing petrels use areas around the island. These results demonstrate that to deal with high demand breeding in a colony surrounded by oligotrophic waters, Trindade petrels need to explore wide foraging areas and utilize a diverse diet, besides adjusting trophic niche according to breeding stage
    corecore