22 research outputs found

    Erythropoietin: a multimodal neuroprotective agent

    Get PDF
    The tissue protective functions of the hematopoietic growth factor erythropoietin (EPO) are independent of its action on erythropoiesis. EPO and its receptors (EPOR) are expressed in multiple brain cells during brain development and upregulated in the adult brain after injury. Peripherally administered EPO crosses the blood-brain barrier and activates in the brain anti-apoptotic, anti-oxidant and anti-inflammatory signaling in neurons, glial and cerebrovascular endothelial cells and stimulates angiogenesis and neurogenesis. These mechanisms underlie its potent tissue protective effects in experimental models of stroke, cerebral hemorrhage, traumatic brain injury, neuroinflammatory and neurodegenerative disease. The preclinical data in support of the use of EPO in brain disease have already been translated to first clinical pilot studies with encouraging results with the use of EPO as a neuroprotective agent

    Modularity induced gating and delays in neuronal networks

    No full text
    Abstract: Neural networks, despite their highly interconnected nature, exhibit distinctly localized and gated activation. Modularity, a distinctive feature of neural networks, has been recently proposed as an important parameter determining the manner by which networks support activity propagation. Here we use an engineered biological model, consisting of engineered rat cortical neurons, to study the role of modular topology in gating the activity between cell populations. We show that pairs of connected modules support conditional propagation (transmitting stronger bursts with higher probability), long delays and propagation asymmetry. Moreover, large modular networks manifest diverse patterns of both local and global activation. Blocking inhibition decreased activity diversity and replaced it with highly consistent transmission patterns. By independently controlling modularity and disinhibition, experimentally and in a model, we pose that modular topology is an important parameter affecting activation localization and is instrumental for population-level gating by disinhibition. Author Summary: The capacity to transmit information between connected parts of a neuronal network is fundamental to its function. The organization of network connections (the topology of the network) is therefore expected to play an important role in determining network transmission. Since modular topology characterizes many brain circuits on multiple scales, investigating the role of modularity in activity gating is clearly desirable. By engineering such modular networks in vitro, we were able to perform such an investigation. Under these experimental conditions, we can independently control the degree of modularity, as well as inhibition in the network. We show that a combination of these two properties is highly beneficial from a communication perspective. Namely, it equips connected modules and large modular networks with the capacity to gate and temporally coordinate activity between the different parts of the network
    corecore