9 research outputs found

    Catalogue of the Tachinidae of Egypt (Diptera: Oestroidea)

    No full text

    Taxonomic Approach to the Tachinid Flies Dinera carinifrons

    No full text
    Molecular phylogenetic and traditional morphometric methods were applied to examine six Pal-aearctic taxa of the taxonomically difficult tachinid fly genus Dinera Robineau-Desvoidy (Diptera: Tachinidae), with particular reference to D. carinifrons (Fallén) and D. fuscata Zhang and Shima. Results of a phylogenetic analysis based on the mitochondrial markers 12S and 16S rDNA and multivariate statistical analyses of 19 morphometric characters were used to delimit both species. A lectotype was designated for D. carinifrons to stabilize the nomenclature in the group. Dinera carinifrons has a transpalaearctic distribution and is present in Central Europe, especially in high altitudes of the Alps. It differs from the similar and closely related D. fuscata in that it has a slightly larger body size, a dense greyish microtrichosity on the body, and different head proportions. Dinera fuscata, as delimited here, is widespread in the Palaearctic region, including Europe. Slight differences in both molecular and morphometric characters were found between western (Europe and Iran) and eastern (China and Japan) populations of D. fuscata, which are interpreted as an intraspecific variation. Differential diagnosis between D. carinifrons and D. fuscata is provided in the form of a revised portion of the determination key to the Palaearctic Dinera by Zhang and Shima (2006)

    Towards resolving the double classification in Erythraeus (Actinotrichida: Erythraeidae): matching larvae with adults using 28S sequence data and experimental rearing

    Get PDF
    The taxonomy of free-living adults and heteromorphic parasitic larvae of Parasitengona mites has in the past been treated independently resulting in a double classification. Correct linkage of names still remains unknown for many species. A holistic understanding of species is imperative for understanding their role in ecosystems. This is particularly true for groups like parasitengone mites with a radically altered lifestyle during development—parasitic to predatory. Here, we infer linkages of three nominal species of Erythraeus, using matching with 28S DNA sequence data from field-collected specimens and through laboratory rearing. The general mixed Yule coalescent method (GMYC) was used to explicitly test if field-collected specimens representing heteromorphic life instars were conspecific. The field-collected larvae were allocated to adults of Erythraeus cinereus and Erythraeus regalis, respectively. Laboratory rearing of the same two species confirmed the matching done by DNA. Rearing was also successful for Erythraeus phalangoides after eggs were treated to an imitated winter diapause. This integrative taxonomic approach of molecular, morphological, and rearing data resulted in the following synonyms: E. phalangoides (De Geer, 1778) [= Erythraeus adrastus(Southcott, 1961), syn. nov.], E. cinereus (Dugès, 1834) [= Erythraeus jowitae Haitlinger, 1987, syn. nov.], and E. regalis (C.L. Koch, 1837) [= Erythraeus kuyperi (Oudemans, 1910), syn. nov., = Erythraeus gertrudae Haitlinger, 1987, syn. nov.]. The molecular evidence confirmed the separate identity of three further members of the genus. We provide redescriptions of E. phalangoides, E. cinereus, and E. regalis after modern standards, and neotypes are designated
    corecore