24 research outputs found

    MMP-1 activation contributes to airway smooth muscle growth and asthma severity

    Get PDF
    Introduction: Matrix metalloproteinase-1 and mast cells are present in the airways of people with asthma. We hypothesised that matrix metalloproteinase-1 could be activated by mast cells and increase asthma severity. Methods: Patients with stable asthma and healthy controls underwent spirometry, methacholine challenge, bronchoscopy and their airway smooth muscle cells were grown in culture. A second asthma group and controls had symptom scores, spirometry and bronchoalveolar lavage before and after rhinovirus-induced asthma exacerbations. Extra-cellular matrix was prepared from decellularised airway smooth muscle cultures. Matrix metalloproteinase-1 protein and activity were assessed. Results: Airway smooth muscle cells generated pro-matrix metalloproteinase-1 which was proteolytically activated by mast cell tryptase. Airway smooth muscle treated with activated mast cell supernatants produced extra-cellular matrix which enhanced subsequent airway smooth muscle growth by 1.5 fold (p<0.05) which was dependent on matrix metalloproteinase-1 activation. In asthma, airway pro-matrix metalloproteinase-1 was 5.4 fold higher than control subjects (p=0.002). Mast cell numbers were associated with airway smooth muscle proliferation and matrix metalloproteinase-1 protein associated with bronchial hyper-responsiveness. During exacerbations, matrix metalloproteinase-1 activity increased and was associated with fall in FEV1 and worsening asthma symptoms. Conclusions: Matrix metalloproteinase-1 is activated by mast cell tryptase resulting in a pro-proliferative extra-cellular matrix. In asthma, mast cells are associated with airway smooth muscle growth, matrix metalloproteinase-1 levels are associated with bronchial hyper-responsiveness and matrix metalloproteinase-1 activation with exacerbation severity. Our findings suggest that airway smooth muscle/mast cell interactions contribute to asthma severity by transiently increasing matrix metalloproteinase activation, airway smooth muscle growth and airway responsiveness

    Changes in elastin, elastin binding protein and versican in alveoli in chronic obstructive pulmonary disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>COPD is characterised by loss of alveolar elastic fibers and by lack of effective repair. Elastic fibers are assembled at cell surfaces by elastin binding protein (EBP), a molecular chaperone whose function can be reversibility inhibited by chondroitin sulphate of matrix proteoglycans such as versican. This study aimed to determine if alveoli of patients with mild to moderate COPD contained increased amounts of versican and a corresponding decrease in EBP, and if these changes were correlated with decreases in elastin and FEV<sub>1</sub>.</p> <p>Methods</p> <p>Lung samples were obtained from 26 control (FEV<sub>1 </sub>≥ 80% predicted, FEV<sub>1</sub>/VC >0.7) and 17 COPD patients (FEV<sub>1 </sub>≥ 40% – <80% predicted, FEV<sub>1</sub>/VC ≤ 0.7) who had undergone a lobectomy for bronchial carcinoma. Samples were processed for histological and immuno-staining. Volume fractions (<it>V</it><sub>v</sub>) of elastin in alveolar walls and alveolar rims were determined by point counting, and versican and EBP assessed by grading of staining intensities.</p> <p>Results</p> <p>Elastin <it>V</it>v was positively correlated with FEV<sub>1 </sub>for both the alveolar walls (r = 0.66, p < 0.001) and rims (r = 0.41, p < 0.01). Versican was negatively correlated with FEV<sub>1 </sub>in both regions (r = 0.30 and 0.32 respectively, p < 0.05), with the highest staining intensities found in patients with the lowest values for FEV<sub>1</sub>. Conversely, staining intensities for EBP in alveolar walls and rims and were positively correlated with FEV<sub>1 </sub>(r = 0.43 and 0.46, p < 0.01).</p> <p>Conclusion</p> <p>Patients with mild to moderate COPD show progressively increased immuno-staining for versican and correspondingly decreased immuno-staining for EBP, with decreasing values of FEV<sub>1</sub>. These findings may explain the lack of repair of elastic fibers in the lungs of patients with moderate COPD. Removal of versican may offer a strategy for effective repair.</p

    Linking Microscopic Spatial Patterns of Tissue Destruction in Emphysema to Macroscopic Decline in Stiffness Using a 3D Computational Model

    Get PDF
    Pulmonary emphysema is a connective tissue disease characterized by the progressive destruction of alveolar walls leading to airspace enlargement and decreased elastic recoil of the lung. However, the relationship between microscopic tissue structure and decline in stiffness of the lung is not well understood. In this study, we developed a 3D computational model of lung tissue in which a pre-strained cuboidal block of tissue was represented by a tessellation of space filling polyhedra, with each polyhedral unit-cell representing an alveolus. Destruction of alveolar walls was mimicked by eliminating faces that separate two polyhedral either randomly or in a spatially correlated manner, in which the highest force bearing walls were removed at each step. Simulations were carried out to establish a link between the geometries that emerged and the rate of decline in bulk modulus of the tissue block. The spatially correlated process set up by the force-based destruction lead to a significantly faster rate of decline in bulk modulus accompanied by highly heterogeneous structures than the random destruction pattern. Using the Karhunen-Loève transformation, an estimator of the change in bulk modulus from the first four moments of airspace cell volumes was setup. Simulations were then obtained for tissue destruction with different idealized alveolar geometry, levels of pre-strain, linear and nonlinear elasticity assumptions for alveolar walls and also mixed destruction patterns where both random and force-based destruction occurs simultaneously. In all these cases, the change in bulk modulus from cell volumes was accurately estimated. We conclude that microscopic structural changes in emphysema and the associated decline in tissue stiffness are linked by the spatial pattern of the destruction process

    Extra-cellular matrix proteins induce matrix metalloproteinase-1 (MMP-1) activity and increase airway smooth muscle contraction in asthma

    Get PDF
    Airway remodelling describes the histopathological changes leading to fixed airway obstruction in patients with asthma and includes extra-cellular matrix (ECM) deposition. Matrix metalloproteinase-1 (MMP-1) is present in remodelled airways but its relationship with ECM proteins and the resulting functional consequences are unknown. We used airway smooth muscle cells (ASM) and bronchial biopsies from control donors and patients with asthma to examine the regulation of MMP-1 by ECM in ASM cells and the effect of MMP-1 on ASM contraction. Collagen-I and tenascin-C induced MMP-1 protein expression, which for tenascin-C, was greater in asthma derived ASM cells. Tenascin-C induced MMP-1 expression was dependent on ERK1/2, JNK and p38 MAPK activation and attenuated by function blocking antibodies against the β1 and β3 integrin subunits. Tenascin-C and MMP-1 were not expressed in normal airways but co-localised in the ASM bundles and reticular basement membrane of patients with asthma. Further, ECM from asthma derived ASM cells stimulated MMP-1 expression to a greater degree than ECM from normal ASM. Bradykinin induced contraction of ASM cells seeded in 3D collagen gels was reduced by the MMP inhibitor ilomastat and by siRNA knockdown of MMP-1. In summary, the induction of MMP-1 in ASM cells by tenascin-C occurs in part via integrin mediated MAPK signalling. MMP-1 and tenascin-C are co-localised in the smooth muscle bundles of patients with asthma where this interaction may contribute to enhanced airway contraction. Our findings suggest that ECM changes in airway remodelling via MMP-1 could contribute to an environment promoting greater airway narrowing in response to broncho-constrictor stimuli and worsening asthma symptoms
    corecore