32 research outputs found

    Androgens modulate autophagy and cell death via regulation of the endoplasmic reticulum chaperone glucose-regulated protein 78/BiP in prostate cancer cells

    Get PDF
    Pro-survival signalling mediated by the androgen receptor (AR) is implicated as a key contributor to prostate carcinogenesis. As prostate tumours are characterized by nutrient-poor, hypoxic and acidified microenvironments, one mechanism whereby AR signalling may contribute to survival is by promoting adaptation to cellular stress. Here we have identified a novel role for AR in the inhibition of autophagy induced by serum withdrawal. This blockade is attributed to AR-mediated upregulation of the endoplasmic reticulum (ER) chaperone glucose-regulated protein 78/BiP (Grp78/BiP), and occurs independently of ER stress response pathway activation. Interestingly, AR activation did not affect serum starvation-induced mammalian target of rapamycin inhibition, illustrating that the adaptive role for androgens lies not in the ability to modulate nutrient sensing, but in the promotion of ER stability. Finally, we show that the adaptive advantage conferred by AR-mediated Grp78/BiP upregulation is temporary, as upon chronic serum starvation, AR activation delayed but did not suppress the onset of autophagy and cell death. This study reveals a novel mechanism whereby maintained AR signalling promotes temporary adaptation to cellular stress and in turn may contribute to the evasion of prostate tumour cell death

    Low levels of vitamin C in dialysis patients is associated with decreased prealbumin and increased C-reactive protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Subclinical inflammation is a common phenomenon in patients on either continuous ambulatory peritoneal dialysis (CAPD) or maintenance hemodialysis (MHD). We hypothesized that vitamin C had anti-inflammation effect because of its electron offering ability. The current study was designed to test the relationship of plasma vitamin C level and some inflammatory markers.</p> <p>Methods</p> <p>In this cross-sectional study, 284 dialysis patients were recruited, including 117 MHD and 167 CAPD patients. The demographics were recorded. Plasma vitamin C was measured by high-performance liquid chromatography. And we also measured body mass index (BMI, calculated as weight/height<sup>2</sup>), Kt/V, serum albumin, serum prealbumin, high-sensitivity C-reactive protein (hsCRP), ferritin, hemoglobin. The relationships between vitamin C and albumin, pre-albumin and hsCRP levels were tested by Spearman correlation analysis and multiple regression analysis.</p> <p>Patients were classified into three subgroups by vitamin C level according to previous recommendation <abbrgrp><abbr bid="B1">1</abbr><abbr bid="B2">2</abbr></abbrgrp> in MHD and CAPD patients respectively: group A: < 2 ug/ml (< 11.4 umol/l, deficiency), group B: 2-4 ug/ml (11.4-22.8 umol/l, insufficiency) and group C: > 4 ug/ml (> 22.8 umol/l, normal and above).</p> <p>Results</p> <p>Patients showed a widely distribution of plasma vitamin C levels in the total 284 dialysis patients. Vitamin C deficiency (< 2 ug/ml) was present in 95(33.45%) and insufficiency (2-4 ug/ml) in 88(30.99%). 73(25.70%) patients had plasma vitamin C levels within normal range (4-14 ug/ml) and 28(9.86%) at higher than normal levels (> 14 ug/ml). The similar proportion of different vitamin C levels was found in both MHD and CAPD groups.</p> <p>Plasma vitamin C level was inversely associated with hsCRP concentration (Spearman r = -0.201, P = 0.001) and positively associated with prealbumin (Spearman r = 0.268, P < 0.001), albumin levels (Spearman r = 0.161, P = 0.007). In multiple linear regression analysis, plasma vitamin C level was inversely associated with log<sub>10</sub>hsCRP (P = 0.048) and positively with prealbumin levels (P = 0.002) adjusted for gender, age, diabetes, modality of dialysis and some other confounding effects.</p> <p>Conclusions</p> <p>The investigation indicates that vitamin C deficiency is common in both MHD patients and CAPD patients. Plasma vitamin C level is positively associated with serum prealbumin level and negatively associated with hsCRP level in both groups. Vitamin C deficiency may play an important role in the increased inflammatory status in dialysis patients. Further studies are needed to determine whether inflammatory status in dialysis patients can be improved by using vitamin C supplements.</p

    The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress.

    Get PDF
    The blood system is sustained by a pool of haematopoietic stem cells (HSCs) that are long-lived due to their capacity for self-renewal. A consequence of longevity is exposure to stress stimuli including reactive oxygen species (ROS), nutrient fluctuation and DNA damage. Damage that occurs within stressed HSCs must be tightly controlled to prevent either loss of function or the clonal persistence of oncogenic mutations that increase the risk of leukaemogenesis. Despite the importance of maintaining cell integrity throughout life, how the HSC pool achieves this and how individual HSCs respond to stress remain poorly understood. Many sources of stress cause misfolded protein accumulation in the endoplasmic reticulum (ER), and subsequent activation of the unfolded protein response (UPR) enables the cell to either resolve stress or initiate apoptosis. Here we show that human HSCs are predisposed to apoptosis through strong activation of the PERK branch of the UPR after ER stress, whereas closely related progenitors exhibit an adaptive response leading to their survival. Enhanced ER protein folding by overexpression of the co-chaperone ERDJ4 (also called DNAJB9) increases HSC repopulation capacity in xenograft assays, linking the UPR to HSC function. Because the UPR is a focal point where different sources of stress converge, our study provides a framework for understanding how stress signalling is coordinated within tissue hierarchies and integrated with stemness. Broadly, these findings reveal that the HSC pool maintains clonal integrity by clearance of individual HSCs after stress to prevent propagation of damaged stem cells

    ERK1/2 signalling protects against apoptosis following endoplasmic reticulum stress but cannot provide long-term protection against BAX/BAK-independent cell death

    Get PDF
    Disruption of protein folding in the endoplasmic reticulum (ER) causes ER stress. Activation of the unfolded protein response (UPR) acts to restore protein homeostasis or, if ER stress is severe or persistent, drive apoptosis, which is thought to proceed through the cell intrinsic, mitochondrial pathway. Indeed, cells that lack the key executioner proteins BAX and BAK are protected from ER stress-induced apoptosis. Here we show that chronic ER stress causes the progressive inhibition of the extracellular signal-regulated kinase (ERK1/2) signalling pathway. This is causally related to ER stress since reactivation of ERK1/2 can protect cells from ER stress-induced apoptosis whilst ERK1/2 pathway inhibition sensitises cells to ER stress. Furthermore, cancer cell lines harbouring constitutively active BRAFV600E are addicted to ERK1/2 signalling for protection against ER stress-induced cell death. ERK1/2 signalling normally represses the pro-death proteins BIM, BMF and PUMA and it has been proposed that ER stress induces BIM-dependent cell death. We found no evidence that ER stress increased the expression of these proteins; furthermore, BIM was not required for ER stress-induced death. Rather, ER stress caused the PERK-dependent inhibition of cap-dependent mRNA translation and the progressive loss of pro-survival proteins including BCL2, BCLXL and MCL1. Despite these observations, neither ERK1/2 activation nor loss of BAX/BAK could confer long-term clonogenic survival to cells exposed to ER stress. Thus, ER stress induces cell death by at least two biochemically and genetically distinct pathways: a classical BAX/BAK-dependent apoptotic response that can be inhibited by ERK1/2 signalling and an alternative ERK1/2- and BAX/BAK-independent cell death pathway

    Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although lung cancer is among the few malignancies for which we know the primary etiological agent (i.e., cigarette smoke), a precise understanding of the temporal sequence of events that drive tumor progression remains elusive. In addition to finding that cigarette smoke (CS) impacts the functioning of key pathways with significant roles in redox homeostasis, xenobiotic detoxification, cell cycle control, and endoplasmic reticulum (ER) functioning, our data highlighted a defensive role for the unfolded protein response (UPR) program. The UPR promotes cell survival by reducing the accumulation of aberrantly folded proteins through translation arrest, production of chaperone proteins, and increased degradation. Importance of the UPR in maintaining tissue health is evidenced by the fact that a chronic increase in defective protein structures plays a pathogenic role in diabetes, cardiovascular disease, Alzheimer's and Parkinson's syndromes, and cancer.</p> <p>Methods</p> <p>Gene and protein expression changes in CS exposed human cell cultures were monitored by high-density microarrays and Western blot analysis. Tissue arrays containing samples from 110 lung cancers were probed with antibodies to proteins of interest using immunohistochemistry.</p> <p>Results</p> <p>We show that: 1) CS induces ER stress and activates components of the UPR; 2) reactive species in CS that promote oxidative stress are primarily responsible for UPR activation; 3) CS exposure results in increased expression of several genes with significant roles in attenuating oxidative stress; and 4) several major UPR regulators are increased either in expression (i.e., BiP and eIF2α) or phosphorylation (i.e., phospho-eIF2α) in a majority of human lung cancers.</p> <p>Conclusion</p> <p>These data indicate that chronic ER stress and recruitment of one or more UPR effector arms upon exposure to CS may play a pivotal role in the etiology or progression of lung cancers, and that phospho-eIF2α and BiP may have diagnostic and/or therapeutic potential. Furthermore, we speculate that upregulation of UPR regulators (in particular BiP) may provide a pro-survival advantage by increasing resistance to cytotoxic stresses such as hypoxia and chemotherapeutic drugs, and that UPR induction is a potential mechanism that could be attenuated or reversed resulting in a more efficacious treatment strategy for lung cancer.</p
    corecore