952 research outputs found
The isotope effect in the Hubbard model with local phonons
The isotope effect (IE) in the two-dimensional Hubbard model with Holstein
phonons is studied using the dynamical cluster approximation with quantum Monte
Carlo. At small electron-phonon (EP) coupling the IE is negligible. For larger
EP coupling there is a large and positive IE on the superconducting temperature
that decreases with increasing doping. A significant IE also appears in the
low-energy density of states, kinetic energy and charge excitation spectrum. A
negligible IE is found in the pseudogap and antiferromagnetic (AF) properties
at small doping whereas the AF susceptibility at intermediate doping increases
with decreasing phonon frequency . This IE stems from increased
polaronic effects with decreasing . A larger IE at smaller doping
occurs due to stronger polaronic effects determined by the interplay of the EP
interaction with stronger AF correlations. The IE of the Hubbard-Holstein model
exhibits many similarities with the IE measured in cuprate superconductors
Gap States in Dilute Magnetic Alloy Superconductors
We study states in the superconducting gap induced by magnetic impurities
using self-consistent quantum Monte Carlo with maximum entropy and formally
exact analytic continuation methods. The magnetic impurity susceptibility has
different characteristics for T_{0} \alt T_{c0} and T_{0} \agt T_{c0}
(: Kondo temperature, : superconducting transition temperature)
due to the crossover between a doublet and a singlet ground state. We
systematically study the location and the weight of the gap states and the gap
parameter as a function of and the concentration of the
impurities.Comment: 4 pages in ReVTeX including 4 encapsulated Postscript figure
Derivation of the Curie-Weiss Law in Dynamical Mean-Field Theory
We present an analytic derivation of the linear temperature dependence of the
inverse static susceptibility near the
transition from a paramagnetic to a ferromagnetic correlated metal within the
dynamical mean-field theory (DMFT) for the Hubbard model. The equations for the
critical temperature and interaction strength of the transition are also
determined.Comment: 5 pages, no figure
Absence of hysteresis at the Mott-Hubbard metal-insulator transition in infinite dimensions
The nature of the Mott-Hubbard metal-insulator transition in the
infinite-dimensional Hubbard model is investigated by Quantum Monte Carlo
simulations down to temperature T=W/140 (W=bandwidth). Calculating with
significantly higher precision than in previous work, we show that the
hysteresis below T_{IPT}\simeq 0.022W, reported in earlier studies, disappears.
Hence the transition is found to be continuous rather than discontinuous down
to at least T=0.325T_{IPT}. We also study the changes in the density of states
across the transition, which illustrate that the Fermi liquid breaks down
before the gap opens.Comment: 4 pages, 4 eps-figures using epsf.st
Temperature-dependent electronic structure and ferromagnetism in the d=oo Hubbard model studied by a modfied perturbation theory
The infinite-dimensional Hubbard model is studied by means of a modified
perturbation theory. The approach reduces to the iterative perturbation theory
for weak coupling. It is exact in the atomic limit and correctly reproduces the
dispersions and the weights of the Hubbard bands in the strong-coupling regime
for arbitrary fillings. Results are presented for the hyper-cubic and an
fcc-type lattice. For the latter we find ferromagnetic solutions. The
filling-dependent Curie temperature is compared with the results of a recent
Quantum Monte Carlo study.Comment: RevTeX, 5 pages, 6 eps figures included, Phys. Rev. B (in press),
Ref. 16 correcte
Dynamical Cluster Quantum Monte Carlo Study of the Single Particle Spectra of Strongly Interacting Fermion Gases
We study the single-particle spectral function of resonantly-interacting
fermions in the unitary regime, as described by the three-dimensional
attractive Hubbard model in the dilute limit. Our approach, based on the
Dynamical Cluster Approximation and the Maximum Entropy Method, shows the
emergence of a gap with decreasing temperature, as reported in recent cold-atom
photoemission experiments, for coupling values that span the BEC-BCS crossover.
By comparing the behavior of the spectral function to that of the imaginary
time dynamical pairing susceptibility, we attribute the development of the gap
to the formation of local bound atom pairs.Comment: 4 pages, 4 figures, accepted by PRA Rapid Communication
Coexistence of solutions in dynamical mean-field theory of the Mott transition
In this paper, I discuss the finite-temperature metal-insulator transition of
the paramagnetic Hubbard model within dynamical mean-field theory. I show that
coexisting solutions, the hallmark of such a transition, can be obtained in a
consistent way both from Quantum Monte Carlo (QMC) simulations and from the
Exact Diagonalization method. I pay special attention to discretization errors
within QMC. These errors explain why it is difficult to obtain the solutions by
QMC close to the boundaries of the coexistence region.Comment: 3 pages, 2 figures, RevTe
Dynamical mean field study of the Mott transition in the half-filled Hubbard model on a triangular lattice
We employ dynamical mean field theory (DMFT) with a Quantum Monte Carlo (QMC)
atomic solver to investigate the finite temperature Mott transition in the
Hubbard model with the nearest neighbor hopping on a triangular lattice at
half-filling. We estimate the value of the critical interaction to be in units of the hopping amplitude through the evolution of the
magnetic moment, spectral function, internal energy and specific heat as the
interaction and temperature are varied. This work also presents a
comparison between DMFT and finite size determinant Quantum Monte Carlo (DQMC)
and a discussion of the advantages and limitations of both methods.Comment: 7 pages, 5 figure
Two-Channel Kondo Lattice: An Incoherent Metal
The two-channel Kondo lattice model is examined with a Quantum Monte Carlo
simulation in the limit of infinite dimensions. We find non-fermi-liquid
behavior at low temperatures including a finite low-temperature single-particle
scattering rate, the lack of a fermi edge and Drude weight. However, the
low-energy density of electronic states is finite. Thus, we identify this
system as an incoherent metal. We discuss the relevance of our results for
concentrated heavy fermion metals with non-Fermi-Liquid behavior.Comment: LaTex, 5 pages, 3 Postscript files. Revision - in reference 5 and
6(a
Systematic study of d-wave superconductivity in the 2D repulsive Hubbard model
The cluster size dependence of superconductivity in the conventional
two-dimensional Hubbard model, commonly believed to describe high-temperature
superconductors, is systematically studied using the Dynamical Cluster
Approximation and Quantum Monte Carlo simulations as cluster solver. Due to the
non-locality of the d-wave superconducting order parameter, the results on
small clusters show large size and geometry effects. In large enough clusters,
the results are independent of the cluster size and display a finite
temperature instability to d-wave superconductivity.Comment: 4 pages, 3 figures; updated with version published in PRL; added
values of Tc obtained from fit
- …