57 research outputs found

    Estimation Of Mercury Wet Deposition In The Tributary Sub-basins Of The Negro River (amazon-brazil) Using Rs/gis Tools

    Get PDF
    Recent studies have shown high concentrations of Hg in fish, soil, lakes and rivers of the Negro river basin. These concentrations were surprisingly high when considering the scarcity of anthropogenic point sources in the region (Fadini and Jardim, 2001). In order to investigate the role of wet deposition in the mercury biogeochemistry cycle in this basin, Hg deposition was estimated for 18 tributary sub-basins of the Negro river, covering an area of nearly 700,000 km2. Mercury wet deposition estimate was done by combining analytical data obtained from total Hg measurements in bulk precipitation (8 measurements between 1997 and 2002), Remote Sensoring (RS) and GIS (Geographic Information System) tools, with the help of orbital images from the JERS-1 SAR project (Global Rain Forest Mapping Project, South America- Amazon Basin), Amazon rainfall map (Sombroek, 2001) and SPRING (Geographic information of processing system) from INPE (Brazilian National Institute of Space Research). For each sub-basin, Hg wet deposition flux (ton km-2 yr-1) and the annual amount of Hg (ton yr-1) deposited on the area were estimated. The result allowed a clear picture of each sub-basins, by looking for a relation between the wet deposition, the drainage characteristics of each sub-basin and the Hg concentration in the water column.107I667670Fadini, P.S., Jardim, W.F., (2001) Sci. Total Environ., 275, pp. 71-82Fadini, P.S., Jardim, W.F., (2000) Analyst, 125, pp. 549-551Sombroek, W., (2001) Ambio, 30 (7), pp. 388-39

    New Challenges In Environmental Chemistry

    No full text
    The major goal of this paper is to point out the frontiers of environmental chemistry and the new paradigms for the next decade, with especial focus to Latin America countries. To better address the issue, three different scenarios were selected: (a) major changes in laboratory routine and research activities; (b) extra-laboratory tendencies; and (c) legal, political and social aspects. In the first case, there is an enormous need for implementing protocols centered on quality assurance, especially when dealing with ultra-trace analysis. The use of certified materials and standards should be enforced in the near future, as well as the implementation of intra and inter laboratory calibration programs. Sampling is another point that will demand a great amount of attention. Field analysis, including in situ monitoring, is a fast growing area in environmental chemistry, and certainly will demand expertise in various issues, including miniaturization of instrumentation, remote and continuous monitoring and bioassays, providing information that certainly will subsidize the evaluation of existing quality criteria for water and air.701222592262(1997) Environ. Sci. Technol., 31, pp. 20AKeith, L.H., Principles of Environmental Sampling (1988) ACS Professional Reference Book, pp. xxiii. , ACSPatlak, M., (1996) Environ. Sci. Technol., 30, pp. 540A-544

    Measurement And Interpretation Of Redox Potential Values (eh) In Environmental Matrices [medição E Interpretação De Valores Do Potencial Redox (eh) Em Matrizes Ambientais]

    No full text
    Direct measurements of Redox Potential (ORP) have been used to infer the degree of electrons availability in waters, wastewaters, sediments and soils. Although the interpretation of the results obtained in direct measurements is not trivial, this parameter is part of a list of compulsory determinations required by many Environmental State Agencies as well as consulting companies. Nonetheless, the vast majority of EHreported values are not corrected to the reference electrode used, what makes most of the data incomparable with the literature, and not suitable for a correct environmental diagnostics.37712331235Baas-Becking, L.G.M., Kaplan, I.R., Moore, D., (1960) J. Geol., 68, p. 243Mahan, B.M., Meyers, R.J., (1995), Química: um curso universitário, 4a ed., Blucher: São PauloLindberg, R.D., Runnells, D.D., (1984) Science, 225, p. 925ASTM Standard Test Method for Oxidation-Reduction Potential of Water., , http://www.astm.org/Standards/D1498.htmLight, T.S., (1972) Anal. Chem., 44, p. 1038Zo Bell, C.E., (1946) Am. Assoc. Pet. Geol. Bull., 30, p. 447Teasdale, P.R., Minett, A.I., Dixon, K., Lewis, T.W., Batley, G.E., (1998) Anal. Chim. Acta, 367, p. 201Nordstrom, D.K., (1977) Geochem. Cosmochim. Acta, 41, p. 1835(2013) USGS National Field Manual for the Collection of Water - Quality Data (TWRI Book 9), Reduction-Oxidation Potential, , http://water.usgs.gov/owq/FieldManual/Chapter6/6.5-contents.html, acessado em 28/11/Barnum, D.W.J., (1982) Chem. Educ., 59, p. 80

    Heterogeneous Photocatalysis And Its Environmental Applications [a Fotocatálise Heterogênea E Sua Aplicação Ambiental]

    No full text
    This article gives some basic principles of heterogeneous photocatalysis using titanium dioxide as photocatalyst and the state of art of its applications to the abatement of aqueous and atmospheric pollutants.2116972Passos, J.A.L., Pereira, F.A., Tomich, S., (1994) Water Sci. Tech., 29, p. 105Legrini, O., Oliveros, E., Braun, A.M., (1993) Chem. Rev., 93, p. 671Huang, C.P., Dong, C., Tang, Z., (1993) Waste Manag., 13, p. 361Fox, M.A., Dulay, M.T., (1993) Chem. Rev., 93, p. 341Mills, A., Davies, R.H., Worsley, D., (1993) Chem. Soe. Rev., 22, p. 417Pichat, P., (1994) Catai. Today, 19, p. 313Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., (1995) Chem. Rev., 95, p. 69Linsebigler, A.L., Lu, G., Yates, J.T., Jr., (1995) Chem. Rev., 95, p. 735Nogueira, R.F.P., Alberici, R.M., Jardim, W.F., (1997) Ciência e Cultura, 49, p. 14Fujishima, A., Honda, K., (1972) Nature (London), 238, p. 37Pruden, A.L., Ollis, D.F., (1983) J. Catal., 83, p. 404Pruden, A.L., Ollis, D.F., (1983) Environ. Sci. Technol., 17, p. 628Lu, G., Linsebigler, A., Yates, J.T., Jr., (1995) J. Phys. Chem., 99, p. 7626Wong, J.C.S., Linsebigler, A., Lu, G., Fan, J., Yates, J.T., Jr., (1995) J. Phys. Chem., 99, p. 335Matthews, R.W., (1991) Water Res., 25, p. 1169Matthews, R.W., McEvoy, S.R., (1992) Sol. Energy, 49, p. 507Nogueira, R.F.P., Jardim, W.F., (1993) J. Chem. Edftc., 70, p. 861Alberici, R.M., Nogueira, R.F.P., Jardim, W.F., (1995) Ciência Hoje (Technologia), 19, p. 4Nogueira, R.F.P., Jardim, W.F., (1996) Sol. Energy, 56, p. 471Williams, R., (1960) J Phys. Chem., 32, p. 1505Lewis, N.S., Rosenbluth, M.L., (1989) Photocatalysis: Fundamentals and Applications, p. 45. , Serpone, N. e Pelizzetti, E., Eds.John Wiley & Sons, Inc.: New YorkBickley, R.I., Gonzalez-Carreno, T., Lees, J.S., Palmisano, L., Tilley, R.J.D., (1991) J. Solid State Chem., 92, p. 178Wong, W.K., Malati, M.A., (1986) Sol. Energy, 36, p. 163Kondo, M.M., Jardim, W.F., (1991) Water Res., 25, p. 823Alberici, R.M., Jardim, W.F., (1994) Water Res., 28, p. 1845Serpone, N., Lawless, D., Disdier, J., Herrmann, J.-M., (1994) Langmuir, 10, p. 643Ohtani, B., Zhang, S., Handa, J., Kajiwara, H., Nishimoto, S., Kagiya, T., (1992) J. Photocliem. Photobiol., A:Chem., 64, p. 223Lee, W., Shen, H.-S., Dwight, K., Wold, A., (1993) J. Solid State Chem., 106, p. 288Choi, W.Y., Termin, A., Hoffmann, M.R., (1994) Angew. Chem. Int. Ed. Engl., 33, p. 1091Sclafani, A., Mozzanega, M.-N., Pichat, P., (1991) J. Photochem. Photobiol. A:Chem., 59, p. 181Anpo, M., Aikawa, N., Kubokawa, Y., (1984) J. Phys. Chem., 88, p. 3998Witier, P., Estaque, L., Roberge, P.C., Kaliaguine, S., (1977) Can J. Chem. Eng., 55, p. 352Herrmann, J.M., Mu, W., Pichat, P., (1991) Heterog. Catal. Fine Chem., 2, p. 405Papp, J., Soled, S., Dwight, K., Wold, A., (1994) Chem. Mater., 6, p. 496Turchi, C.S., Ollis, D.F., (1989) J. Catal., 119, p. 483Butler, E.C., Davis, A.P., (1993) J. Photochem. Photobiol. A:Chem., 70, p. 273Kormann, C., Bahnemann, D.W., Hoffmann, M.R., (1991) Environ. Sci. Technol., 25, p. 494Ohtani, B., Nishimoto, S.-I., (1993) J. Phys. Chem., 97, p. 920Matthews, R.W., (1988) J. Catal., 111, p. 264Sclafani, A., Mozzanega, M.-N., Pichat, P., (1991) J. Photochem. Photobiol. A: Chem, 59, p. 181Wang, C.M., Heller, A., Gerischer, H., (1992) J. Am. Chem. Soc., 114, p. 5230Matthews, R.W., (1990) Water Res., 24, p. 653Okamoto, K., Yamamoto, Y., Tanaka, H., Tanaka, M., Itaya, A., (1985) Bull. Cliem. Soc. Jpn., 58, p. 2015Augugliaro, V., Loddo, V., Palmisano, L., Schiavello, M., (1995) Solar Energy Mat. Solar Cells, 38, p. 411Al-Ekabi, H., Serpone, N., (1988) J. Phys. Chem., 92, p. 5726Mills, A., Morris, S., Davies, R., (1993) J. Photochem. Photobiol. A:Chem, 70, p. 183Ku, Y., Hsieh, C.B., (1992) Water Res., 26, p. 1451Mills, G., Hoffmann, M.R., (1993) Environ. Sci. Technol., 27, p. 1681Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E., Hidaka, H., (1995) J. Photochem. Photobiol. A:Cliem., 85, p. 247Aguado, M.A., Anderson, M.A., (1993) Sol. Energy Mater. Solar Cells, 28, p. 345Prairie, M.R., Evans, L.R., Stange, B.M., Martinez, S.L., (1993) Environ. Sci. Technol., 27, p. 1776Tunesi, S., Anderson, M., (1991) J. Phys. Chem., 95, p. 3399Minero, C., Pramauro, E., Pelizzetti, E., Dolci, M., Marchesini, A., (1992) Cliemosphere, 24, p. 1597Percherancier, J.P., Chapelon, R., Pouyet, B., (1995) J. Photochem. Photobiol. A:Chem., 87, p. 261Kinkennon, A.E., Green, D.B., Hutchinson, B., (1995) Cliemosphere, 31, p. 3663Hidaka, H., Zhao, J., Pelizzetti, E., Serpone, N., (1992) J. Pltys. Chem., 96, p. 2226Zhao, J., Hidaka, H., Takamura, A., Pelizzetti, E., Serpone, N., (1993) Langmuir, 9, p. 1646Matthews, R.W., (1989) J. Chem. Soc. Faraday Trans. I, 85, p. 1291Pollema, C.H., Hendrix, J.L., Milosavljevic, E.B., Solujic, L., Nelson, J.H., (1992) J. Photochem. Photobiol. A: Chem., 66, p. 235Mihaylov, B.V., Hendrix, J., Nelson, J.H., (1993) J. Photochem. Photobiol., 72, p. 173Suzuki, K.-I., Satoh, S., Yoshida, T., (1991) Denki Agaku, 59, p. 521Canela, M.C., Alberici, R.M., Jardim, W.F., (1997) Appl. Surf. Sci., , (no prelo)Alberici, R. M.Tese de doutorado, Insituto de Química-Unicamp, 1996Matsunaga, T., Tomoda, R., Nakajima, T., Wake, H., (1985) "FEMS" Microbiol. Lett., 29, p. 211Ireland, J.C., Klostermann, P., Rice, E., Clark, R., (1993) Appl. Environ, Microbiol, 59, p. 1669(1996) The Second International Conference on TiO2 Phto-catalytic Purification and Treatment of Water and Air, , Cincinnati, Ohio, EUA. Livro de Resumo
    corecore