15 research outputs found

    Scrub typhus ecology: a systematic review of Orientia in vectors and hosts

    Get PDF
    Abstract Scrub typhus, caused by Orientia tsutsugamushi, is an important and neglected vector-borne zoonotic disease with an expanding known distribution. The ecology of the disease is complex and poorly understood, impairing discussion of public health interventions. To highlight what we know and the themes of our ignorance, we conducted a systematic review of all studies investigating the pathogen in vectors and non-human hosts. A total of 276 articles in 7 languages were included, with 793 study sites across 30 countries. There was no time restriction for article inclusion, with the oldest published in 1924. Seventy-six potential vector species and 234 vertebrate host species were tested, accounting for over one million trombiculid mites (‘chiggers’) and 83,000 vertebrates. The proportion of O. tsutsugamushi positivity was recorded for different categories of laboratory test and host species. Vector and host collection sites were geocoded and mapped. Ecological data associated with these sites were summarised. A further 145 articles encompassing general themes of scrub typhus ecology were reviewed. These topics range from the life-cycle to transmission, habitats, seasonality and human risks. Important gaps in our understanding are highlighted together with possible tools to begin to unravel these. Many of the data reported are highly variable and inconsistent and minimum data reporting standards are proposed. With more recent reports of human Orientia sp. infection in the Middle East and South America and enormous advances in research technology over recent decades, this comprehensive review provides a detailed summary of work investigating this pathogen in vectors and non-human hosts and updates current understanding of the complex ecology of scrub typhus. A better understanding of scrub typhus ecology has important relevance to ongoing research into improving diagnostics, developing vaccines and identifying useful public health interventions to reduce the burden of the disease.</jats:p

    Increased larval mosquito densities from modified landuses in the Kapiti region, New Zealand: Vegetation, water quality, and predators as associated environmental factors

    No full text
    Landuse changes, including deforestation, agriculture, and urbanization, have coincided with an increase in vector-borne diseases worldwide. Landuse changes may alter mosquito populations by modifying the characteristics of aquatic larval habitats, but we still poorly understand the physical, chemical, and biological factors involved. We examined a total of 81 mosquito larval habitats for immature mosquitoes and 17 environmental variables in native forest, pastureland, and urbanland, at three locations in the Kapiti region, New Zealand. Significantly higher immature mosquito densities, predominantly of the endemic species Cx. pervigilans, were collected from urbanland and pastureland compared to native forest. Urbanland and pastureland habitats were mostly artificial containers compared to ground pools in native forest. Generalized linear modeling (GLM) revealed nine environmental variables that were significantly different between landuses. Of these variables, mosquito density was significantly (positively) correlated with bacteria and dissolved organic carbon. When location and date were controlled for in GLM, mosquito density was (negatively) related to the presence of vegetation and combined predators. The findings of this study support those from prior surveys in warmer climates suggesting greater mosquito-borne disease risk in anthropogenically-modified environments because of ecosystem disruption. Unlike most previous field-based work, this study suggests that in addition to habitat type, the presence of vegetation, water quality, and predators are also associated with mosquito density and may be involved in causal mechanisms. Urban containers and stock drinking troughs had high mosquito densities, suggesting that an initial step in directing control operations should be to focus on these habitats

    A Review of the Invasive Mosquitoes in Europe: Ecology, Public Health Risks, and Control Options

    No full text
    There has been growing interest in Europe in recent years in the establishment and spread of invasive mosquitoes, notably the incursion of Aedes albopictus through the international trade in used tires and lucky bamboo, with onward spread within Europe through ground transport. More recently, five other non-European aedine mosquito species have been found in Europe, and in some cases populations have established locally and are spreading. Concerns have been raised about the involvement of these mosquito species in transmission cycles of pathogens of public health importance, and these concerns were borne out following the outbreak of chikungunya fever in Italy in 2007, and subsequent autochthonous cases of dengue fever in France and Croatia in 2010. This article reviews current understanding of all exotic (five introduced invasive and one intercepted) aedine species in Europe, highlighting the known import pathways, biotic and abiotic constraints for establishment, control strategies, and public health significance, and encourages Europe-wide surveillance for invasive mosquitoes
    corecore