187 research outputs found

    Investigation of MRSA transmission between pigs and the environment following intra-nasal inoculation

    Get PDF
    Meticillin-resistant Staphylococcus aureus (MRSA) ST398 has not been detected in pigs in Ireland. However, other strains of MRSA, including MRSA t002, have been isolated from animals and humans in Ireland. The aim of this study was to determine if nasal colonization of pigs with a non-ST398 strain of MRSA could be reproduced using intra-nasal inoculation and to investigate subsequent transmission of this strain. Six pigs were inoculated intra-nasally with 2 x 109cfu MRSA t002. Six days post-inoculation these pigs were washed and moved to a clean house with 15 unexposed pigs (In-contact group). Another 15 unexposed pigs were added to the vacated house (Environment group)

    Zonula Occludens-1 and -2 Are Cytosolic Scaffolds That Regulate the Assembly of Cellular Junctions

    Get PDF
    The integrity of the tight junction barrier in epithelial and endothelial cells is critical to human health, but we still lack a detailed mechanistic knowledge of how the barrier is formed during development or responds to pathological and pharmacological insults. This limits our understanding of barrier dysfunction in disease and slows the development of therapeutic strategies. Recent studies confirm the long-maintained but previously unsupported view that the zonula occludens (ZO) proteins ZO-1 and ZO-2 are critical determinants of barrier formation. However, ZO proteins can also be components of adherens junctions, and recent studies suggest that ZO proteins may also promote the assembly and function of these junctions during epithelial morphogenesis. We review these studies and outline several recent observations that suggest that one role of ZO proteins is to regulate cytoskeletal dynamics at cell junctions. Finally, we propose a model by which the functional activities of ZO proteins in the adherens junction and tight junction are differentiated by a novel regulatory motif known as the U6 or acidic motif

    The Unique-5 and -6 Motifs of ZO-1 Regulate Tight Junction Strand Localization and Scaffolding Properties

    Get PDF
    The proper cellular location and sealing of tight junctions is assumed to depend on scaffolding properties of ZO-1, a member of the MAGUK protein family. ZO-1 contains a conserved SH3-GUK module that is separated by a variable region (unique-5), which in other MAGUKs has proven regulatory functions. To identify motifs in ZO-1 critical for its putative scaffolding functions, we focused on the SH3-GUK module including unique-5 (U5) and unique-6 (U6), a motif immediately C-terminal of the GUK domain. In vitro binding studies reveal U5 is sufficient for occludin binding; U6 reduces the affinity of this binding. In cultured cells, U5 is required for targeting ZO-1 to tight junctions and removal of U6 results in ectopically displaced junction strands containing the modified ZO-1, occludin, and claudin on the lateral cell membrane. These results provide evidence that ZO-1 can control the location of tight junction transmembrane proteins and reveals complex protein binding and targeting signals within its SH3-U5-GUK-U6 region. We review these findings in the context of regulated scaffolding functions of other MAGUK protein

    U-Pb zircon ages of the Wildhorse gneiss, Pioneer Mountains, south-central Idaho, and tectonic implications

    Get PDF
    The gneiss complex of Wildhorse Creek (Wildhorse gneiss) forms the central component of the lowest structural plate in the Pioneer metamorphic core complex of south-central Idaho. The oldest rock in the complex is a felsic ortho-gneiss, with Neoarchean U-Pb magmatic zircon ages of 2.60-2.67 Ga. The ortho-gneiss overlaps in age and is interpreted to be part of the Grouse Creek block of the Albion Mountains to the south. This Archean metagranitoid is structurally interleaved with paragneiss containing quartzite and calc-silicate rock. Structurally below the orthogneiss, some quartzites have multiple concordant populations of detrital-zircon grains as young as ca. 1700 Ma, while others have no zircon grains younger than ca. 2500 Ma. Structurally above the Archean gneiss is a heterogeneous paragneiss that contains calc-silicate and quartzitic rocks with detrital zircons as young as ca. 1460 Ma. Amphibolite in this unit contains zircons dated at ca. 1850 Ma, indicating that this rock can be no older than that and implying considerable structural complexity. The upper part of the Wildhorse gneiss contains metaquartzites bearing zircons as young as ca. 1400 Ma. The protolith of this paragneiss is interpreted as the southernmost exposures of the Lemhi subbasin of the Mesoproterozoic Belt Supergroup. The upper Wildhorse gneiss includes ca. 695 Ma intrusive orthogneiss that is coeval with Neoproterozoic rift-related volcanic or intrusive rocks near Pocatello, House Mountain, and Edwardsburg, Idaho. This Cryogenian meta-intrusive rock is the likely source of the 650-710 Ma detrital-zircon population in the Big Lost River that drains the core complex. Initial eHf values from 675 Ma zircons are between 3.4 and -2.4, suggesting the granitoids had a mixed source in both continental crust and juvenile mantle.This research was supported by National Science Foundation grants EAR 05-10980 and 08-38425 and U.S. Geological Survey grant G14AC00136. Logistical support was provided by the Idaho State University Geology field camp at Lost River Field Station

    Dimerization of the Scaffolding Protein ZO-1 through the Second PDZ Domain

    Get PDF
    The tight junction protein ZO-1 is known to link the transmembrane proteins occludin, claudins, and JAMs to many cytoplasmic proteins and the actin cytoskeleton. Although specific roles for ZO-1 at the tight junction are unknown, it is widely assumed that ZO-1, together with its homologs ZO-2 and ZO-3, serves as a platform to scaffold various transmembrane and cytoplasmic tight junction proteins. Thus the manner in which the zonula occludens (ZO) proteins multimerize has implications for the protein networks they can coordinate. The purpose of our study was to determine whether ZO-1 forms homodimers and to determine the protein interaction region. Using laser light scattering and analytical centrifugation, we show that protein sequences corresponding to the NH(2)-terminal half of ZO-1 form stable homodimers with a submicromolar equilibrium dissociation constant. Analysis of the molecular weight of different truncated forms of ZO-1 revealed that the second PDZ domain is both necessary and sufficient for dimerization. This interaction does not use the beta-finger motif described for other PDZ dimers. Furthermore, ZO-1 does not dimerize via an Src homology 3 to Guk domain interaction as was demonstrated previously for MAGUKs, like PSD-95. Results from immunoprecipitation experiments with polarized Madin-Darby canine kidney epithelial cells stably transfected with full-length GFP-ZO-1 indicate that a substantial portion of ZO-1 forms homodimers in vivo. As described previously, ZO-1 also forms heterodimers with ZO-2 and ZO-3. We conclude that the dimerization of ZO proteins is unlike that of other MAGUKs and that the previously unrecognized ZO-1 homodimers may allow formation of protein networks distinct from those of heterodimers with ZO-2 and ZO-3

    Epithelial barrier assembly requires coordinated activity of multiple domains of the tight junction protein ZO-1

    Get PDF
    Tight junctions (TJs) regulate the paracellular movement of ions, macromolecules and immune cells across epithelia. Zonula occludens (ZO)-1 is a multi-domain polypeptide required for the assembly of TJs. MDCK II cells lacking ZO-1, and its homolog ZO-2, have three distinct phenotypes: reduced localization of occludin and some claudins to the TJs, increased epithelial permeability, and expansion of the apical actomyosin contractile array found at the apical junction complex (AJC). However, it is unclear exactly which ZO-1 binding domains are required to coordinate these activities. We addressed this question by examining the ability of ZO-1 domain-deletion transgenes to reverse the effects of ZO depletion. We found that the SH3 domain and the U5 motif are required to recruit ZO-1 to the AJC and that localization is a prerequisite for normal TJ and cytoskeletal organization. The PDZ2 domain is not required for localization of ZO-1 to the AJC, but is necessary to establish the characteristic continuous circumferential band of ZO-1, occludin and claudin-2. PDZ2 is also required to establish normal permeability, but is not required for normal cytoskeletal organization. Finally, our results demonstrate that PDZ1 is crucial for the normal organization of both the TJ and the AJC cytoskeleton. Our results establish that ZO-1 acts as a true scaffolding protein and that the coordinated activity of multiple domains is required for normal TJ structure and function

    ZO-1 Stabilizes the Tight Junction Solute Barrier through Coupling to the Perijunctional Cytoskeleton

    Get PDF
    ZO-1 binds numerous transmembrane and cytoplasmic proteins and is required for assembly of both adherens and tight junctions, but its role in defining barrier properties of an established tight junction is unknown. We depleted ZO-1 in MDCK cells using siRNA methods and observed specific defects in the barrier for large solutes, even though flux through the small claudin pores was unaffected. This permeability increase was accompanied by morphological alterations and reorganization of apical actin and myosin. The permeability defect, and to a lesser extent morphological changes, could be rescued by reexpression of either full-length ZO-1 or an N-terminal construct containing the PDZ, SH3, and GUK domains. ZO-2 knockdown did not replicate either the permeability or morphological phenotypes seen in the ZO-1 knockdown, suggesting that ZO-1 and -2 are not functionally redundant for these functions. Wild-type and knockdown MDCK cells had differing physiological and morphological responses to pharmacologic interventions targeting myosin activity. Use of the ROCK inhibitor Y27632 or myosin inhibitor blebbistatin increased TER in wild-type cells, whereas ZO-1 knockdown monolayers were either unaffected or changed in the opposite direction; paracellular flux and myosin localization were also differentially affected. These studies are the first direct evidence that ZO-1 limits solute permeability in established tight junctions, perhaps by forming a stabilizing link between the barrier and perijunctional actomyosin

    Domain Swapping within PDZ2 Is Responsible for Dimerization of ZO Proteins

    Get PDF
    ZO-1 is a multidomain protein involved in cell-cell junctions and contains three PDZ domains, which are necessary for its function in vivo. PDZ domains play a central role in assembling diverse protein complexes through their ability to recognize short peptide motifs on other proteins. We determined the structure of the second of the three PDZ domains of ZO-1, which is known to promote dimerization as well as bind to C-terminal sequences on connexins. The dimer is stabilized by extensive symmetrical domain swapping of β-strands, which is unlike any other known mechanism of PDZ dimerization. The canonical peptide-binding groove remains intact in both subunits of the PDZ2 dimer and is created by elements contributed from both monomers. This unique structure reveals an additional example of how PDZ domains dimerize and has multiple implications for both peptide binding and oligomerization in vivo

    The Src Homology 3 Domain Is Required for Junctional Adhesion Molecule Binding to the Third PDZ Domain of the Scaffolding Protein ZO-1

    Get PDF
    Tight junctions are cell-cell contacts that regulate the paracellular flux of solutes and prevent pathogen entry across cell layers. The assembly and permeability of this barrier are dependent on the zonula occludens (ZO) membrane-associated guanylate kinase (MAGUK) proteins ZO-1, -2, and -3. MAGUK proteins are characterized by a core motif of protein-binding domains that include a PDZ domain, a Src homology 3 (SH3) domain, and a region of homology to guanylate kinase (GUK); the structure of this core motif has never been determined for any MAGUK. To better understand how ZO proteins organize the assembly of protein complexes we have crystallized the entire PDZ3-SH3-GUK core motif of ZO-1. We have also crystallized this core motif in complex with the cytoplasmic tail of the ZO-1 PDZ3 ligand, junctional adhesion molecule A (JAM-A) to determine how the activity of different domains is coordinated. Our study shows a new feature for PDZ class II ligand binding that implicates the two highly conserved Phe−2 and Ser−3 residues of JAM. Our x-ray structures and NMR experiments also show for the first time a role for adjacent domains in the binding of ligands to PDZ domains in the MAGUK proteins family

    Structural Basis of a Key Factor Regulating the Affinity between the Zonula Occludens First PDZ Domain and Claudins

    Get PDF
    The molecular seal between epithelial cells, called the tight junction (TJ), is built by several membrane proteins, with claudins playing the most prominent role. The scaffold proteins of the zonula occludens family are required for the correct localization of claudins and hence formation of the TJ. The intracellular C terminus of claudins binds to the N-terminal PDZ domain of zonula occludens proteins (PDZ1). Of the 23 identified human claudin proteins, nine possess a tyrosine at the −6 position. Here we show that the claudin affinity for PDZ1 is dependent on the presence or absence of this tyrosine and that the affinity is reduced if the tyrosine is modified by phosphorylation. The PDZ1 β2-β3 loop undergoes a significant conformational change to accommodate this tyrosine. Cell culture experiments support a regulatory role for this tyrosine. Plasticity has been recognized as a critical property of TJs that allow cell remodeling and migration. Our work provides a molecular framework for how TJ plasticity may be regulated
    corecore