19 research outputs found

    Cognitive effects of transcranial direct current stimulation combined with working memory training in fibromyalgia: a randomized clinical trial

    Get PDF
    Cognitive dysfunction in fibromyalgia has been reported, especially memory. Anodal transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) has been effective in enhancing this function. We tested the effects of eight sessions of tDCS and cognitive training on immediate and delayed memory, verbal fluency and working memory and its association with brain-derived neurotrophic factor (BDNF) levels. Forty females with fibromyalgia were randomized to receive eight sessions of active or sham tDCS. Anodal stimulation (2 mA) was applied over the DLPFC and online combined with a working memory training (WMT) for 20 minutes. Pre and post-treatment neurocognitive tests were administered. Data analysis on deltas considering years of education and BDNF as covariates, indicated active-tDCS + WMT significantly increased immediate memory indexed by Rey Auditory Verbal Learning Test score when compared to sham. This effect was dependent on basal BDNF levels. In addition, the model showed active stimulation increased orthographic and semantic verbal fluency scores (Controlled Oral Word Association Test) and short-term memory (Forward Digit Span). The combination of both techniques seemed to produce effects on specific cognitive functions related to short-term and long-term episodic memory and executive functions, which has clinical relevance for top-down treatment approaches in FM.financiamento: This research was supported by grants and material support from the following Brazilian agencies: Committee for the Development of Higher Education Personnel - CAPES - PNPD/CAPES and material support. National Council for Scientific and Technological Development - CNPq (grants to Dr. I.L.S. Torres, Dr. W. Caumo). Postgraduate Program in Medical Sciences at the School of Medicine of the Federal University of Rio Grande do Sul (material support). Postgraduate Research Group at the Hospital de Clinicas de Porto Alegre - FIPE HCPA (material support). Foundations for Support of Research at Rio Grande do Sul (FAPERGS) (material support)

    P2 receptors and chronic pain

    Get PDF
    There is abundant evidence that extracellular ATP and other nucleotides have an important role in pain signaling at both the periphery and in the CNS. The focus of attention now is on the possibility that endogenous ATP and its receptor system might be activated in chronic pathological pain states, particularly in neuropathic and inflammatory pain. Neuropathic pain is often a consequence of nerve injury through surgery, bone compression, diabetes or infection. This type of pain can be so severe that even light touching can be intensely painful; unfortunately, this state is generally resistant to currently available treatments. In this review, we summarize the role of ATP receptors, particularly the P2X4, P2X3 and P2X7 receptors, in neuropathic and inflammatory pain. The expression of P2X4 receptors in the spinal cord is enhanced in spinal microglia after peripheral nerve injury, and blocking pharmacologically and suppressing molecularly P2X4 receptors produce a reduction of the neuropathic pain behaviour. Understanding the key roles of these ATP receptors may lead to new strategies for the management of intractable chronic pain

    Microglial brain region−dependent diversity and selective regional sensitivities to aging

    Get PDF
    Microglia play critical roles in neural development, homeostasis and neuroinflammation and are increasingly implicated in age-related neurological dysfunction. Neurodegeneration often occurs in disease-specific spatially-restricted patterns, the origins of which are unknown. We performed the first genome-wide analysis of microglia from discrete brain regions across the adult lifespan of the mouse and reveal that microglia have distinct region-dependent transcriptional identities and age in a regionally variable manner. In the young adult brain, differences in bioenergetic and immunoregulatory pathways were the major sources of heterogeneity and suggested that cerebellar and hippocampal microglia exist in a more immune vigilant state. Immune function correlated with regional transcriptional patterns. Augmentation of the distinct cerebellar immunophenotype and a contrasting loss in distinction of the hippocampal phenotype among forebrain regions were key features during ageing. Microglial diversity may enable regionally localised homeostatic functions but could also underlie region-specific sensitivities to microglial dysregulation and involvement in age-related neurodegeneration

    Pain in ankylosing spondylitis: a neuro-immune collaboration

    No full text
    corecore