8 research outputs found
Coexistence of metallic and nonmetallic properties in the pyrochlore Lu2Rh2O7
Transition metal oxides of the and block have recently become the
targets of materials discovery, largely due to their strong spin-orbit coupling
that can generate exotic magnetic and electronic states. Here we report the
high pressure synthesis of LuRhO, a new cubic pyrochlore oxide
based on Rh and characterizations via thermodynamic, electrical
transport, and muon spin relaxation measurements. Magnetic susceptibility
measurements reveal a large temperature-independent Pauli paramagnetic
contribution, while heat capacity shows an enhanced Sommerfeld coefficient,
= 21.8(1) mJ/mol-Rh K. Muon spin relaxation measurements confirm
that LuRhO remains paramagnetic down to 2 K. Taken in combination,
these three measurements suggest that LuRhO is a correlated
paramagnetic metal with a Wilson ratio of . However, electric
transport measurements present a striking contradiction as the resistivity of
LuRhO is observed to monotonically increase with decreasing
temperature, indicative of a nonmetallic state. Furthermore, although the
magnitude of the resistivity is that of a semiconductor, the temperature
dependence does not obey any conventional form. Thus, we propose that
LuRhO may belong to the same novel class of non-Fermi liquids as
the nonmetallic metal FeCrAs.Comment: 11 pages, 5 figure
Detection of Babesia divergens in southern Norway by using an immunofluorescence antibody test in cow sera
<p>Abstract</p> <p>Background</p> <p>The incidence of bovine babesiosis, caused by <it>Babesia divergens </it>(Apicomplexa: Piroplasmida) has decreased markedly since the 1930 s, but may re-emerge as a consequence of climate change and changes in legislation and pasturing practices. This is a potentially serious disease, with both economical and animal welfare consequences. Therefore, there is a need to survey the distribution of <it>B. divergens</it>.</p> <p>Methods</p> <p>We tested sera from 306 healthy pastured cows from 24 farms along the southern Norwegian coast by using an indirect immunofluorescence IgG antibody test (IFAT). Fractions of seropositive cows were compared by calculating 95% CI.</p> <p>Results</p> <p>The results of this test showed that 27% of the sera were positive for <it>B. divergens </it>antibodies. The fraction of antibody-positive sera that we detected showed a two-humped distribution, with a high fraction of positives being found in municipalities in the western and eastern parts of the study area, while the municipalities between these areas had few or no positive serum samples.</p> <p>Conclusions</p> <p>Neither the farmers' observations nor the Norwegian Dairy Herd Recording System give an adequate picture of the distribution of bovine babesiosis. Serological testing of cows by using IFAT is a convenient way of screening for the presence of <it>B. divergens </it>in an area.</p
Multiple Coulomb phase in the fluoride pyrochlore CsNiCrF6
The Coulomb phase is an idealized state of matter whose properties are determined by factors beyond conventional considerations of symmetry, including global topology, conservation laws and emergent order. Theoretically, Coulomb phases occur in ice-type systems such as water ice and spin ice; in dimer models; and in certain spin liquids. However, apart from ice-type systems, more general experimental examples are very scarce. Here we study the partly disordered material CsNiCrF6 and show that this material is a multiple Coulomb phase with signature correlations in three degrees of freedom: charge configurations, atom displacements and spin configurations. We use neutron and X-ray scattering to separate these correlations and to determine the magnetic excitation spectrum. Our results show how the structural and magnetic properties of apparently disordered materials may inherit, and be dictated by, a hidden symmetryâthe local gauge symmetry of an underlying Coulomb phase