12 research outputs found

    Effects of flavonoids on glycosaminoglycan synthesis: implications for substrate reduction therapy in Sanfilippo disease and other mucopolysaccharidoses

    Get PDF
    Sanfilippo disease (mucopolysaccharidosis type III, MPS III) is a severe metabolic disorder caused by accumulation of heparan sulfate (HS), one of glycosaminoglycans (GAGs), due to a genetic defect resulting in a deficiency of GAG hydrolysis. This disorder is characterized as the most severe neurological form of MPS, revealing rapid deterioration of brain functions. Among therapeutic approaches for MPS III, one of the most promising appears to be the substrate reduction therapy (SRT). Genistein (5, 7-dihydroxy-3- (4-hydroxyphenyl)-4H-1-benzopyran-4-one) is an isoflavone that has been used in SRT for MPS III. In this report, we tested effects of other flavonoids (apigenin, daidzein, kaempferol and naringenin) on GAG synthesis. Their cytotoxicity and anti-proliferation features were also tested. We found that daidzein and kaempferol inhibited GAG synthesis significantly. Moreover, these compounds were able to reduce lysosomal storage in MPS IIIA fibroblasts. Interestingly, although genistein is believed to inhibit GAG synthesis by blocking the tyrosine kinase activity of the epidermal growth factor receptor, we found that effects of other flavonoids were not due to this mechanism. In fact, combinations of various flavonoids resulted in significantly more effective inhibition of GAG synthesis than the use of any of these compounds alone. These results, together with results published recently by others, suggest that combination of flavonoids can be considered as a method for improvement of efficiency of SRT for MPS III

    Adverse Effects of Genistein in a Mucopolysaccharidosis Type I Mouse Model

    No full text
    Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder characterized by diminished degradation of the glycosaminoglycans heparan sulfate (HS) and dermatan sulfate (DS). Patients present with a variety of symptoms, including severe skeletal disease. Current therapeutic strategies have only limited effects on bone disease. The isoflavone genistein has been studied as a potential therapy for the mucopolysaccharidoses because of its putative ability to inhibit GAG synthesis and subsequent accumulation. Cell, animal, and clinical studies, however, showed variable outcomes. To determine the effects of genistein on MPS I-related bone disease, wild-type (WT) and MPS I mice were fed a genistein-supplemented diet (corresponding to a dose of approximately 160 mg/kg/day) for 8 weeks. HS and DS levels in bone and plasma remained unchanged after genistein supplementation, while liver HS levels were decreased in genistein-fed MPS I mice as compared to untreated MPS I mice. Unexpectedly, genistein-fed mice exhibited significantly decreased body length and femur length. In addition, 60% of genistein-fed MPS I mice developed a scrotal hernia and/or scrotal hydrocele, manifestations, which were absent in WT or untreated MPS I mice. In contrast to studies in MPS III mice, our study in MPS I mice demonstraes no beneficial but even potential adverse effects of genistein supplementation. Our results urge for a cautious approach on the use of genistein, at least in patients with MPS
    corecore