1,186 research outputs found

    Partially spin polarized quantum Hall effect in the filling factor range 1/3 < nu < 2/5

    Full text link
    The residual interaction between composite fermions (CFs) can express itself through higher order fractional Hall effect. With the help of diagonalization in a truncated composite fermion basis of low-energy many-body states, we predict that quantum Hall effect with partial spin polarization is possible at several fractions between ν=1/3\nu=1/3 and ν=2/5\nu=2/5. The estimated excitation gaps are approximately two orders of magnitude smaller than the gap at ν=1/3\nu=1/3, confirming that the inter-CF interaction is extremely weak in higher CF levels.Comment: 4 pages, 3 figure

    Mixed States of Composite Fermions Carrying Two and Four Vortices

    Full text link
    There now exists preliminary experimental evidence for some fractions, such as ν\nu = 4/11 and 5/13, that do not belong to any of the sequences ν=n/(2pn±1)\nu=n/(2pn\pm 1), pp and nn being integers. We propose that these states are mixed states of composite fermions of different flavors, for example, composite fermions carrying two and four vortices. We also obtain an estimate of the lowest-excitation dispersion curve as well as the transport gap; the gaps for 4/11 are smaller than those for 1/3 by approximately a factor of 50.Comment: Accepted for PRB rapid communication (scheduled to appear in Nov 15, 2000 issue

    Experimental Evidence for a Spin-Polarized Ground State in the \nu=5/2 Fractional Quantum Hall Effect

    Full text link
    We study the \nu=5/2 even-denominator fractional quantum Hall effect (FQHE) over a wide range of magnetic (B) field in a heterojunction insulated gate field-effect transistor (HIGFET). The electron density can be tuned from n=0 to 7.6 \times 10^{11} cm^{-2} with a peak mobility \mu = 5.5 \times 10^6 cm^2/Vs. The \nu=5/2 state shows a strong minimum in diagonal resistance and a developing Hall plateau at magnetic fields as high as 12.6T. The strength of the energy gap varies smoothly with B-field. We interpret these observations as strong evidence for a spin-polarized ground state at \nu=5/2.Comment: new references adde

    Hund's Rule for Composite Fermions

    Full text link
    We consider the ``fractional quantum Hall atom" in the vanishing Zeeman energy limit, and investigate the validity of Hund's maximum-spin rule for interacting electrons in various Landau levels. While it is not valid for {\em electrons} in the lowest Landau level, there are regions of filling factors where it predicts the ground state spin correctly {\em provided it is applied to composite fermions}. The composite fermion theory also reveals a ``self-similar" structure in the filling factor range 4/3>ν>2/34/3>\nu>2/3.Comment: 10 pages, revte

    Fractional Quantum Hall States in Low-Zeeman-Energy Limit

    Full text link
    We investigate the spectrum of interacting electrons at arbitrary filling factors in the limit of vanishing Zeeman splitting. The composite fermion theory successfully explains the low-energy spectrum {\em provided the composite fermions are treated as hard-core}.Comment: 12 pages, revte

    Composite Fermions and the Energy Gap in the Fractional Quantum Hall Effect

    Full text link
    The energy gaps for the fractional quantum Hall effect at filling fractions 1/3, 1/5, and 1/7 have been calculated by variational Monte Carlo using Jain's composite fermion wave functions before and after projection onto the lowest Landau level. Before projection there is a contribution to the energy gaps from the first excited Landau level. After projection this contribution vanishes, the quasielectron charge becomes more localized, and the Coulomb energy contribution increases. The projected gaps agree well with previous calculations, lending support to the composite fermion theory.Comment: 12 pages, Revtex 3.0, 2 compressed and uuencoded postscript figures appended, NHMFL-94-062

    The Nature of the Hall Insulator

    Full text link
    We have conducted an experimental study of the linear transport properties of the magnetic-field induced insulating phase which terminates the quantum Hall (QH) series in two dimensional electron systems. We found that a direct and simple relation exists between measurements of the longitudinal resistivity, ρxx\rho_{xx}, in this insulating phase and in the neighboring QH phase. In addition, we find that the Hall resistivity, ρxy\rho_{xy}, can be quantized in the insulating phase. Our results indicate that a close relation exists between the conduction mechanism in the insulator and in the QH liquid.Comment: RevTeX, 4 pages, 4 figure

    Theory of Shubnikov--De Haas Oscillations Around the ν=1/2\nu=1/2 Filling Factor of the Landau Level: Effect of Gauge Field Fluctuations

    Full text link
    We present a theory of magnetooscillations around the ν=1/2\nu =1/2 Landau level filling factor based on a model with a fluctuating Chern--Simons field. The quasiclassical treatment of the problem is appropriate and leads to an unconventional exp[(π/ωcτ1/2)4]\exp\left[-(\pi/\omega_c\tau^*_{1/2})^4\right] behavior of the amplitude of oscillations. This result is in good qualitative agreement with available experimental data.Comment: Revtex, 4 pages, 1 figure attached as PostScript fil

    Structures for Interacting Composite Fermions: Stripes, Bubbles, and Fractional Quantum Hall Effect

    Full text link
    Much of the present day qualitative phenomenology of the fractional quantum Hall effect can be understood by neglecting the interactions between composite fermions altogether. For example the fractional quantum Hall effect at ν=n/(2pn±1)\nu=n/(2pn\pm 1) corresponds to filled composite-fermion Landau levels,and the compressible state at ν=1/2p\nu=1/2p to the Fermi sea of composite fermions. Away from these filling factors, the residual interactions between composite fermions will determine the nature of the ground state. In this article, a model is constructed for the residual interaction between composite fermions, and various possible states are considered in a variational approach. Our study suggests formation of composite-fermion stripes, bubble crystals, as well as fractional quantum Hall states for appropriate situations.Comment: 16 pages, 7 figure

    A New Transport Regime in the Quantum Hall Effect

    Full text link
    This paper describes an experimental identification and characterization of a new low temperature transport regime near the quantum Hall-to-insulator transition. In this regime, a wide range of transport data are compactly described by a simple phenomenological form which, on the one hand, is inconsistent with either quantum Hall or insulating behavior and, on the other hand, is also clearly at odds with a quantum-critical, or scaling, description. We are unable to determine whether this new regime represents a clearly defined state or is a consequence of finite temperature and sample-size measurements.Comment: Revtex, 3 pages, 2 figure
    corecore