19,176 research outputs found

    How New York City Reduced Mass Incarceration: A Model for Change?

    Get PDF
    In this report, leading criminologists examine the connection between New York City's shift in policing strategies and the dramatic decrease in the City's incarcerated and correctional population

    Graphite fiber-polyimide composite rod end bearings for high-temperature high-load applications

    Get PDF
    Self-aligning plain spherical and plain cylindical oscillating bearings with self-lubricating elements are composed of 50 weight-percent chopped graphite fibers and 50 weight-percent polyimide

    A model for the influence of pressure on the bulk modulus and the influence of temperature on the solidification pressure for liquid lubricants

    Get PDF
    Two pressure chambers, for compression experiments with liquids from zero to 2.2 GPa pressure, are described. The experimentally measured compressions are then compared to theoretical values given by an isothermal model of equation of state recently introduced for solids. The model describes the pressure and bulk modulus as a function of compression for different types of lubricants with a very high accuracy up to the pressure limit of the high pressure chamber used (2.2 GPa). In addition the influence of temperature on static solidification pressure was found to be a simple function of the thermal expansion of the fluid

    Black holes in Einstein-aether and Horava-Lifshitz gravity

    Full text link
    We study spherical black-hole solutions in Einstein-aether theory, a Lorentz-violating gravitational theory consisting of General Relativity with a dynamical unit timelike vector (the "aether") that defines a preferred timelike direction. These are also solutions to the infrared limit of Horava-Lifshitz gravity. We explore parameter values of the two theories where all presently known experimental constraints are satisfied, and find that spherical black-hole solutions of the type expected to form by gravitational collapse exist for all those parameters. Outside the metric horizon, the deviations away from the Schwarzschild metric are typically no more than a few percent for most of the explored parameter regions, which makes them difficult to observe with electromagnetic probes, but in principle within reach of future gravitational-wave detectors. Remarkably, we find that the solutions possess a universal horizon, not far inside the metric horizon, that traps waves of any speed relative to the aether. A notion of black hole thus persists in these theories, even in the presence of arbitrarily high propagation speeds.Comment: 18 pages, 12 figures; v2: typos corrected, matches published versio

    Destroying black holes with test bodies

    Full text link
    If a black hole can accrete a body whose spin or charge would send the black hole parameters over the extremal limit, then a naked singularity would presumably form, in violation of the cosmic censorship conjecture. We review some previous results on testing cosmic censorship in this way using the test body approximation, focusing mostly on the case of neutral black holes. Under certain conditions a black hole can indeed be over-spun or over-charged in this approximation, hence radiative and self-force effects must be taken into account to further test cosmic censorship.Comment: Contribution to the proceedings of the First Mediterranean Conference on Classical and Quantum Gravity (talk given by T. P. S.). Summarizes the results of Phys. Rev. Lett. 103, 141101 (2009), arXiv:0907.4146 [gr-qc] and considers further example

    Spinning Black Holes as Particle Accelerators

    Full text link
    It has recently been pointed out that particles falling freely from rest at infinity outside a Kerr black hole can in principle collide with arbitrarily high center of mass energy in the limiting case of maximal black hole spin. Here we aim to elucidate the mechanism for this fascinating result, and to point out its practical limitations, which imply that ultra-energetic collisions cannot occur near black holes in nature.Comment: 3 pages; v2: references added, minor modifications to match version published in PR

    Graphite-fiber-reinforced polyimide liners of various compositions in plain spherical bearings

    Get PDF
    A plain spherical bearing design with a ball diameter of 28.6 mm, a race length of 12.7 mm, and a 1.7-mm-thick, molded composite liner was evaluated. The liner material is a self-lubricating composite of graphite-fiber-reinforced polyimide resin (GFRPI). The liner is prepared by transfer molding a mixture of one part chopped graphite fiber and one part partially polymerized resin into the space between the bearing ball and the outer race and then completing the polymerization under heat and pressure. Several liner compositions were evaluated: two types of polyimide, condensation and addition; two types of graphite fiber, low and high modulus; and four powder additives - cadmium oxide, cadmium iodide, graphite fluoride, and molybdenum disulfide. The bearings were oscillated + or - 15 deg at 1 Hz for 20 kilocycles under a radial unit load of 29 MN sq m (4200 psi) in dry air at 25, 200, or 315 C. Both types of fiber and polyimide gave low friction and wear. A simple equation was developed to fit the wear-time data and adequately predicted wear to 100 kilocycles

    Friction and wear of plasma-sprayed coatings containing cobalt alloys from 25 deg to 650 deg in air

    Get PDF
    Four different compositions of self-lubricating, plasma-sprayed, composite coatings with calcium fluoride dispersed throughout cobalt alloy-silver matrices were evaluated on a friction and wear apparatus. In addition, coatings of the cobalt alloys alone and one coating with a nickel alloy-silver matrix were evaluated for comparison. The wear specimens consisted of two, diametrically opposed, flat rub shoes sliding on the coated, cylindrical surface of a rotating disk. Two of the cobalt composite coatings gave a friction coefficient of about 0.25 and low wear at room temperature, 400 and 650 C. Wear rates were lower than those of the cobalt alloys alone or the nickel alloy composite coating. However, oxidation limited the maximum useful temperature of the cobalt composite coating to about 650 C compared to about 900 C for the nickel composite coating
    • …
    corecore