5 research outputs found

    Dealing with doping. A plea for better science, governance and education.

    Get PDF
    The creation of WADA contributed to harmonization of anti-doping and changed doping behavior and prevalence in the past 22 years. However, the system has developed important deficiencies and limitations that are causing harm to sports, athletes and society. These issues are related to the lack of evidence for most substances on the Prohibited List for performance or negative health effects, a lack of transparency and accountability of governance and decision-making by WADA and the extension of anti-doping policies outside the field of professional sports. This article tries to identify these deficiencies and limitations and presents a plea for more science, better governance and more education. This should lead to a discussion for reform among stakeholders, which should cover support of a new Prohibited List by actual research and evidence and introduce better governance with accountable control bodies and regulation. Finally, comprehensive education for all stakeholders will be the basis of all future positive improvements

    Neurostimulation, doping, and the spirit of sport

    Get PDF
    There is increasing interest in using neuro-stimulation devices to achieve an ergogenic effect in elite athletes. Although the World Anti-Doping Authority (WADA) does not currently prohibit neuro-stimulation techniques, a number of researchers have called on WADA to consider its position on this issue. Focusing on trans-cranial direct current stimulation (tDCS) as a case study of an imminent so-called ‘neuro-doping’ intervention, we argue that the emerging evidence suggests that tDCS may meet WADA’s own criteria (pertaining to safety, performance-enhancing effect, and incompatibility with the ‘spirit of sport’) for a method’s inclusion on its list of prohibited substances and methods. We begin by surveying WADA’s general approach to doping, and highlight important limitations to the current evidence base regarding the performance-enhancing effect of pharmacological doping substances. We then review the current evidence base for the safety and efficacy of tDCS, and argue that despite significant shortcomings, it may be sufficient for WADA to consider prohibiting tDCS, in light of the comparable flaws in the evidence base for pharmacological doping substances. In the second half of the paper, we argue that the question of whether WADA ought to ban tDCS turns significantly on the question of whether it is compatible with the ‘spirit of sport’ criterion. We critique some of the previously published positions on this, and advocate our own sport-specific and application-specific approach. Despite these arguments, we finally conclude by suggesting that tDCS ought to be monitored rather than prohibited due to compelling non-ideal considerations

    Complex I is bypassed during high intensity exercise.

    Get PDF
    Human muscles are tailored towards ATP synthesis. When exercising at high work rates muscles convert glucose to lactate, which is less nutrient efficient than respiration. There is hence a trade-off between endurance and power. Metabolic models have been developed to study how limited catalytic capacity of enzymes affects ATP synthesis. Here we integrate an enzyme-constrained metabolic model with proteomics data from muscle fibers. We find that ATP synthesis is constrained by several enzymes. A metabolic bypass of mitochondrial complex I is found to increase the ATP synthesis rate per gram of protein compared to full respiration. To test if this metabolic mode occurs in vivo, we conduct a high resolved incremental exercise tests for five subjects. Their gas exchange at different work rates is accurately reproduced by a whole-body metabolic model incorporating complex I bypass. The study therefore shows how proteome allocation influences metabolism during high intensity exercise
    corecore