71 research outputs found

    Enhanced Generation of Induced Pluripotent Stem Cells from a Subpopulation of Human Fibroblasts

    Get PDF
    BACKGROUND: The derivation of induced pluripotent stem cells (iPSCs) provides new possibilities for basic research and novel cell-based therapies. Limitations, however, include our current lack of understanding regarding the underlying mechanisms and the inefficiency of reprogramming. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report identification and isolation of a subpopulation of human dermal fibroblasts that express the pluripotency marker stage specific embryonic antigen 3 (SSEA3). Fibroblasts that expressed SSEA3 demonstrated an enhanced iPSC generation efficiency, while no iPSC derivation was obtained from the fibroblasts that did not express SSEA3. Transcriptional analysis revealed NANOG expression was significantly increased in the SSEA3 expressing fibroblasts, suggesting a possible mechanistic explanation for the differential reprogramming. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this study is the first to identify a pluripotency marker in a heterogeneous population of human dermal fibroblasts, to isolate a subpopulation of cells that have a significantly increased propensity to reprogram to pluripotency and to identify a possible mechanism to explain this differential reprogramming. This discovery provides a method to significantly increase the efficiency of reprogramming, enhancing the feasibility of the potential applications based on this technology, and a tool for basic research studies to understand the underlying reprogramming mechanisms

    Ruptured appendiceal cystadenoma presenting as right inguinal hernia in a patient with left colon cancer: A case report and review of literature

    Get PDF
    BACKGROUND: Mucoceles resulting from cystadenomas of the appendix are uncommon. Although rare, rupture of the mucoceles can occur with or without causing any abdominal complaint. There are several reports associating colonic malignancy with cystadenomas of the appendix. Herein, we report an unusual and interesting case of right inguinal hernia associated with left colon cancer. CASE PRESENTATION: A case of ruptured mucocele resulting from cystadenoma of the appendix was presented as right inguinal hernia in a 70-year-old male. The patient underwent colonoscopy, x-ray, ultrasound and computed tomography. Localized pseudomyxoma peritonei associated with adenocarcinoma of the descending colon was diagnosed. The patient underwent segmental resection of the colon, appendectomy, debridement of pseudomyxoma and closure of the internal ring of right inguinal canal. He is free of symptoms in one year follow-up. CONCLUSION: Synchronous colon cancer may occur in patients with appendiceal mucoceles. In such patients, the colon should be investigated and colonoscopy can be performed meticulously in cases of ruptured mucoceles and localized pseudomyxoma peritonei. Surgical intervention is the current choice of management

    A novel platform to enable the high-throughput derivation and characterization of feeder-free human iPSCs

    Get PDF
    Human induced pluripotent stem cells (hiPSCs) hold enormous potential, however several obstacles impede their translation to industrial and clinical applications. Here we describe a platform to efficiently generate, characterize and maintain single cell and feeder-free (FF) cultured hiPSCs by means of a small molecule cocktail media additive. Using this strategy we have developed an effective multiplex sorting and high-throughput selection platform where individual clonal hiPSC lines are readily obtained from a pool of candidate clones, expanded and thoroughly characterized. By promoting survival and self-renewal, the selected hiPSC clones can be rapidly expanded over multiple FF, single-cell passages while maintaining their pluripotency and genomic stability as demonstrated by trilineage differentiation, karyotype and copy number variation analysis. This study provides a robust platform that increases efficiency, throughput, scale and quality of hiPSC generation and facilitates the industrial and clinical use of iPSC technology

    Risk factors in the development of stem cell therapy

    Get PDF
    Stem cell therapy holds the promise to treat degenerative diseases, cancer and repair of damaged tissues for which there are currently no or limited therapeutic options. The potential of stem cell therapies has long been recognised and the creation of induced pluripotent stem cells (iPSC) has boosted the stem cell field leading to increasing development and scientific knowledge. Despite the clinical potential of stem cell based medicinal products there are also potential and unanticipated risks. These risks deserve a thorough discussion within the perspective of current scientific knowledge and experience. Evaluation of potential risks should be a prerequisite step before clinical use of stem cell based medicinal products

    The impact of transposable element activity on therapeutically relevant human stem cells

    Get PDF
    Human stem cells harbor significant potential for basic and clinical translational research as well as regenerative medicine. Currently ~ 3000 adult and ~ 30 pluripotent stem cell-based, interventional clinical trials are ongoing worldwide, and numbers are increasing continuously. Although stem cells are promising cell sources to treat a wide range of human diseases, there are also concerns regarding potential risks associated with their clinical use, including genomic instability and tumorigenesis concerns. Thus, a deeper understanding of the factors and molecular mechanisms contributing to stem cell genome stability are a prerequisite to harnessing their therapeutic potential for degenerative diseases. Chemical and physical factors are known to influence the stability of stem cell genomes, together with random mutations and Copy Number Variants (CNVs) that accumulated in cultured human stem cells. Here we review the activity of endogenous transposable elements (TEs) in human multipotent and pluripotent stem cells, and the consequences of their mobility for genomic integrity and host gene expression. We describe transcriptional and post-transcriptional mechanisms antagonizing the spread of TEs in the human genome, and highlight those that are more prevalent in multipotent and pluripotent stem cells. Notably, TEs do not only represent a source of mutations/CNVs in genomes, but are also often harnessed as tools to engineer the stem cell genome; thus, we also describe and discuss the most widely applied transposon-based tools and highlight the most relevant areas of their biomedical applications in stem cells. Taken together, this review will contribute to the assessment of the risk that endogenous TE activity and the application of genetically engineered TEs constitute for the biosafety of stem cells to be used for substitutive and regenerative cell therapiesS.R.H. and P.T.R. are funded by the Government of Spain (MINECO, RYC-2016- 21395 and SAF2015–71589-P [S.R.H.]; PEJ-2014-A-31985 and SAF2015–71589- P [P.T.R.]). GGS is supported by a grant from the Ministry of Health of the Federal Republic of Germany (FKZ2518FSB403)

    Present state and future perspectives of using pluripotent stem cells in toxicology research

    Get PDF
    The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed
    corecore