18 research outputs found

    Flotation and remediation of contaminated sludge and soil

    No full text
    Flotation, traditionally applied in mineralogy, has been used more recently in wastewater treatment, soil and sediment remediation and paper de-inking. The latter types of application may differ from mineral separation by the fact that the particles that should be floated are often partially hydrophobic and this will have consequences for the use of collectors and frothers. The focus is on sludge flotation because large quantities of contaminated harbor sludge or polluted soil require treatment and remediation by flotation is a potential alternative for classification. The results show that in two of the three cases studied collector addition has a negative effect

    Cryopreservation of avian semen

    No full text
    Cryopreservation protocols for semen exist for bird species used in animal production, fancy and hobby species, and wild bird species. Freezing of bird oocytes or embryos is not possible. Cryopreservation of avian semen is used for preserving (genetic diversity of) endangered species or breeds. Freezing semen can also be used in the breeding industry for maintaining breeding lines, as a cost-effective alternative to holding live birds. Success and efficiency of cryopreservation of bird semen differs among species and breeds or selection lines. This chapter describes important variables of methods for collecting, diluting, cold storage, and freezing and thawing of bird semen, notably the medium composition, cryoprotectant used and its concentration, cooling rate, freezing method, and warming method. Media and methods are described for freezing semen using either glycerol or DMA as cryoprotectant, which both are known in chicken and a number of other bird species to render adequate post-thaw fertility rates.</p

    Oxidative stress response and nitrogen utilization are strongly variable in Saccharomyces cerevisiae wine strains with different fermentation performances

    No full text
    We used RNA-sequencing (RNA-seq) to analyze the expression profile of four vineyard strains of Saccharomyces cerevisiae having different fermentation performances. The expression profiles obtained in two steps of the fermentation process were compared with those obtained for the industrial wine strain EC1118 and for the laboratory strain S288c. The two strains with low fermentation efficiency, namely, S288c and the vineyard strain R103, exhibited markedly different expression profiles when compared to the other four strains. We also found that the vineyard strains P283 and P301 are characterized by a high expression of the transcription factor Met32p in the first step of the fermentation. Met32p, in coordination with the Hap4p transcription factor, determined the over-expression of the genes involved in the respiration processes, in the response to oxidative stress and in the sulfur amino acids biosynthesis. These combined actions are likely to increase the level of antioxidants whose protective effect could contribute to improve the fermentation process. Gene expression and phenotypic data revealed that the vineyard strain P301 has low nitrogen utilization in comparison to the other wine strains, combined with high fermentation efficiency. Analysis of the genes involved in fermentation stress response revealed a lower expression in strains characterized by low fermentation efficiency, particularly in the first fermentation phase. These findings evidenced the high variability of transcriptional profiles among different wine yeast strains and clarify their connection with complex phenotypic traits, such as the fermentation efficiency and the nitrogen sources utilization
    corecore