17 research outputs found

    CDA directs metabolism of epigenetic nucleosides revealing a therapeutic window in cancer

    Get PDF
    Cells require nucleotides to support DNA replication and repair damaged DNA. In addition to de novo synthesis, cells recycle nucleotides from the DNA of dying cells or from cellular material ingested through the diet. Salvaged nucleosides come with the complication that they can contain epigenetic modifications. Because epigenetic inheritance of DNA methylation mainly relies on copying of the modification pattern from parental strands1, 2, 3, random incorporation of pre-modified bases during replication could have profound implications for epigenome fidelity and yield adverse cellular phenotypes. Although the salvage mechanism of 5-methyl-2′deoxycytidine (5mdC) has been investigated before4, 5, 6, it remains unknown how cells deal with the recently identified oxidized forms of 5mdC: 5-hydroxymethyl-2′deoxycytidine (5hmdC), 5-formy-2′deoxycytidine (5fdC) and 5-carboxyl-2′deoxycytidine (5cadC)7, 8, 9, 10. Here we show that enzymes of the nucleotide salvage pathway display substrate selectivity, effectively protecting newly synthesized DNA from the incorporation of epigenetically modified forms of cytosine. Thus, cell lines and animals can tolerate high doses of these modified cytidines without any deleterious effects on physiology. Notably, by screening cancer cell lines for growth defects after exposure to 5hmdC, we unexpectedly identify a subset of cell lines in which 5hmdC or 5fdC administration leads to cell lethality. Using genomic approaches, we show that the susceptible cell lines overexpress cytidine deaminase (CDA). CDA converts 5hmdC and 5fdC into variants of uridine that are incorporated into DNA, resulting in accumulation of DNA damage, and ultimately, cell death. Our observations extend current knowledge of the nucleotide salvage pathway by revealing the metabolism of oxidized epigenetic bases, and suggest a new therapeutic option for cancers, such as pancreatic cancer, that have CDA overexpression and are resistant to treatment with other cytidine analogues11

    5-Formylcytosine to Cytosine Conversion by C-C Bond Cleavage in vivo

    Get PDF
    Tet enzymes oxidise 5-methyl-deoxycytidine (mdC) to 5-hydroxymethyl-dC (hmdC), 5-formyl-dC (fdC) and 5-carboxy-dC (cadC) in DNA. It was proposed that fdC and cadC deformylate and decarboxylate to dC in the course of an active demethylation process. This would re-install canonical dC bases at previously methylated sites. The question whether such direct C-C bond cleavage reactions at fdC and cadC occur in vivo remains an unsolved problem. Here we report the incorporation of synthetic isotope- and (R)-2’-fluorine-labelled dC and fdC-derivatives into the genome of cultured mammalian cells. Following the fate of these probe molecules using UHPLC-MS/MS provided quantitative data about the formed reaction products. The data show that the labelled fdC probe is efficiently converted into the corresponding labelled dC, most likely after its incorporation into the genome. This allows concluding that fdC is undergoing C-C bond cleavage in stem cells that leads to the direct re-installation of unmodified dC

    DEPDC1/LET-99 participates in an evolutionarily conserved pathway for anti-tubulin drug-induced apoptosis

    Full text link
    Microtubule-targeting chemotherapeutics induce apoptosis in cancer cells by promoting the phosphorylation and degradation of the anti-apoptotic BCL-2 family member MCL1. The signalling cascade linking microtubule disruption to MCL1 degradation remains however to be defined. Here, we establish an in vivo screening strategy in Caenorhabditis elegans to uncover genes involved in chemotherapy-induced apoptosis. Using an RNAi-based screen, we identify three genes required for vincristine-induced apoptosis. We show that the DEP domain protein LET-99 acts upstream of the heterotrimeric G protein alpha subunit GPA-11 to control activation of the stress kinase JNK-1. The human homologue of LET-99, DEPDC1, similarly regulates vincristine-induced cell death by promoting JNK-dependent degradation of the BCL-2 family protein MCL1. Collectively, these data uncover an evolutionarily conserved mediator of anti-tubulin drug-induced apoptosis and suggest that DEPDC1 levels could be an additional determinant for therapy response upstream of MCL1
    corecore