9 research outputs found

    The evolutionary origins of ritualized acoustic signals in caterpillars

    Get PDF
    Animal communication signals can be highly elaborate, and researchers have long sought explanations for their evolutionary origins. For example, how did signals such as the tail-fan display of a peacock, a firefly flash or a wolf howl evolve? Animal communication theory holds that many signals evolved from non-signalling behaviours through the process of ritualization. Empirical evidence for ritualization is limited, as it is necessary to examine living relatives with varying degrees of signal evolution within a phylogenetic framework. We examine the origins of vibratory territorial signals in caterpillars using comparative and molecular phylogenetic methods. We show that a highly ritualized vibratory signal—anal scraping—originated from a locomotory behaviour—walking. Furthermore, comparative behavioural analysis supports the hypothesis that ritualized vibratory signals derive from physical fighting behaviours. Thus, contestants signal their opponents to avoid the cost of fighting. Our study provides experimental evidence for the origins of a complex communication signal, through the process of ritualization

    The effect of weight loss on lameness in obese dogs with osteoarthritis

    Get PDF
    This paper describes the effect of weight loss on lameness in obese dogs with osteoarthritis (OA). Fourteen obese client-owned dogs with clinical and radiographic signs of OA participated in an open prospective clinical trial. After a screening visit and a visit for collection of baseline data, the dogs were fed a restricted-calorie diet over a study period of 16 weeks that incorporated six follow-up visits. At each visit, body weight and pelvic circumference were measured and severity of lameness was assessed using a numeric rating scale (NRS), a visual analogue scale (VAS) and kinetic gait analysis. This is the first study to assess both subjectively and objectively, the effect of weight loss alone on lameness in obese dogs with OA. The results indicate that body weight reduction causes a significant decrease in lameness from a weight loss of 6.10% onwards. Kinetic gait analysis supported the results from a body weight reduction of 8.85% onwards. These results confirm that weight loss should be presented as an important treatment modality to owners of obese dogs with OA and that noticeable improvement may be seen after modest weight loss in the region of 6.10 – 8.85% body weight
    corecore