82 research outputs found

    Localization of ultrasound in a three-dimensional elastic network

    Full text link
    After exactly half a century of Anderson localization, the subject is more alive than ever. Direct observation of Anderson localization of electrons was always hampered by interactions and finite temperatures. Yet, many theoretical breakthroughs were made, highlighted by finite-size scaling, the self-consistent theory and the numerical solution of the Anderson tight-binding model. Theoretical understanding is based on simplified models or approximations and comparison with experiment is crucial. Despite a wealth of new experimental data, with microwaves, light, ultrasound and cold atoms, many questions remain, especially for three dimensions. Here we report the first observation of sound localization in a random three-dimensional elastic network. We study the time-dependent transmission below the mobility edge, and report ``transverse localization'' in three dimensions, which has never been observed previously with any wave. The data are well described by the self-consistent theory of localization. The transmission reveals non-Gaussian statistics, consistent with theoretical predictions.Comment: Final published version, 5 pages, 4 figure

    Synthetic lethal therapies for cancer: what's next after PARP inhibitors?

    Get PDF
    The genetic concept of synthetic lethality has now been validated clinically through the demonstrated efficacy of poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of cancers in individuals with germline loss-of-function mutations in either BRCA1 or BRCA2. Three different PARP inhibitors have now been approved for the treatment of patients with BRCA-mutant ovarian cancer and one for those with BRCA-mutant breast cancer; these agents have also shown promising results in patients with BRCA-mutant prostate cancer. Here, we describe a number of other synthetic lethal interactions that have been discovered in cancer. We discuss some of the underlying principles that might increase the likelihood of clinical efficacy and how new computational and experimental approaches are now facilitating the discovery and validation of synthetic lethal interactions. Finally, we make suggestions on possible future directions and challenges facing researchers in this field

    Neurofibromatosis: chronological history and current issues

    Full text link

    Einstein-Podolsky-Rosen-Bohm laboratory experiments: Data analysis and simulation

    No full text
    Data produced by laboratory Einstein-Podolsky-Rosen-Bohm (EPRB) experiments is tested against the hypothesis that the statistics of this data is given by quantum theory of this thought experiment. Statistical evidence is presented that the experimental data, while violating Bell inequalities, does not support this hypothesis. It is shown that an event-based simulation model, providing a cause-and-effect description of real EPRB experiments at a level of detail which is not covered by quantum theory, reproduces the results of quantum theory of this thought experiment, indicating that there is no fundamental obstacle for a real EPRB experiment to produce data that can be described by quantum theory

    Exceeding human limits

    No full text
    • …
    corecore