41 research outputs found

    Comparison of RBE values of high- LET α-particles for the induction of DNA-DSBs, chromosome aberrations and cell reproductive death

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Various types of radiation effects in mammalian cells have been studied with the aim to predict the radiosensitivity of tumours and normal tissues, e.g. DNA double strand breaks (DSB), chromosome aberrations and cell reproductive inactivation. However, variation in correlations with clinical results has reduced general application. An additional type of information is required for the increasing application of high-LET radiation in cancer therapy: the Relative Biological Effectiveness (RBE) for effects in tumours and normal tissues. Relevant information on RBE values might be derived from studies on cells in culture.</p> <p>Methods</p> <p>To evaluate relationships between DNA-DSB, chromosome aberrations and the clinically most relevant effect of cell reproductive death, for ionizing radiations of different LET, dose-effect relationships were determined for the induction of these effects in cultured SW-1573 cells irradiated with gamma-rays from a Cs-137 source or with α-particles from an Am-241 source. RBE values were derived for these effects. Ionizing radiation induced foci (IRIF) of DNA repair related proteins, indicative of DSB, were assessed by counting gamma-H2AX foci. Chromosome aberration frequencies were determined by scoring fragments and translocations using premature chromosome condensation. Cell survival was measured by colony formation assay. Analysis of dose-effect relations was based on the linear-quadratic model.</p> <p>Results</p> <p>Our results show that, although both investigated radiation types induce similar numbers of IRIF per absorbed dose, only a small fraction of the DSB induced by the low-LET gamma-rays result in chromosome rearrangements and cell reproductive death, while this fraction is considerably enhanced for the high-LET alpha-radiation. Calculated RBE values derived for the linear components of dose-effect relations for gamma-H2AX foci, cell reproductive death, chromosome fragments and colour junctions are 1.0 ± 0.3, 14.7 ± 5.1, 15.3 ± 5.9 and 13.3 ± 6.0 respectively.</p> <p>Conclusions</p> <p>These results indicate that RBE values for IRIF (DNA-DSB) induction provide little valid information on other biologically-relevant end points in cells exposed to high-LET radiations. Furthermore, the RBE values for the induction of the two types of chromosome aberrations are similar to those established for cell reproductive death. This suggests that assays of these aberrations might yield relevant information on the biological effectiveness in high-LET radiotherapy.</p

    Short-term salivary acetaldehyde increase due to direct exposure to alcoholic beverages as an additional cancer risk factor beyond ethanol metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An increasing body of evidence now implicates acetaldehyde as a major underlying factor for the carcinogenicity of alcoholic beverages and especially for oesophageal and oral cancer. Acetaldehyde associated with alcohol consumption is regarded as 'carcinogenic to humans' (IARC Group 1), with sufficient evidence available for the oesophagus, head and neck as sites of carcinogenicity. At present, research into the mechanistic aspects of acetaldehyde-related oral cancer has been focused on salivary acetaldehyde that is formed either from ethanol metabolism in the epithelia or from microbial oxidation of ethanol by the oral microflora. This study was conducted to evaluate the role of the acetaldehyde that is found as a component of alcoholic beverages as an additional factor in the aetiology of oral cancer.</p> <p>Methods</p> <p>Salivary acetaldehyde levels were determined in the context of sensory analysis of different alcoholic beverages (beer, cider, wine, sherry, vodka, calvados, grape marc spirit, tequila, cherry spirit), without swallowing, to exclude systemic ethanol metabolism.</p> <p>Results</p> <p>The rinsing of the mouth for 30 seconds with an alcoholic beverage is able to increase salivary acetaldehyde above levels previously judged to be carcinogenic in vitro, with levels up to 1000 ÎŒM in cases of beverages with extreme acetaldehyde content. In general, the highest salivary acetaldehyde concentration was found in all cases in the saliva 30 sec after using the beverages (average 353 ÎŒM). The average concentration then decreased at the 2-min (156 ÎŒM), 5-min (76 ÎŒM) and 10-min (40 ÎŒM) sampling points. The salivary acetaldehyde concentration depends primarily on the direct ingestion of acetaldehyde contained in the beverages at the 30-sec sampling, while the influence of the metabolic formation from ethanol becomes the major factor at the 2-min sampling point.</p> <p>Conclusions</p> <p>This study offers a plausible mechanism to explain the increased risk for oral cancer associated with high acetaldehyde concentrations in certain beverages.</p

    A sensitivity study of the factors affecting the risks associated with the disposal of spent nuclear fuel in a geological disposal facility in a clay environment

    No full text
    The disposal route for the UK's inventory of spent nuclear fuel has yet to be decided upon, however if the UK follows the approach taken by many nations, its spent nuclear fuel will be destined for geological disposal. This paper provides a simplified, approach to the calculation of radiological risk posed to members of the public, associated with the disposal of spent advanced gas-cooled reactor (AGR) nuclear fuel in a geological disposal facility (GDF) located in a hypothetical clay geological setting. Simulating the release of radionuclides at differing levels of complexity shall aid in the development of aspects of the design, construction, operation, decommissioning and post-closure phases of geological disposal and the development of a safety case for geological disposal. This paper presents a high-level, 1-D model built in GoldSim, to provide an initial indication of the radiological risks to the public, the nature of which would require further development into a complex total system model in order to facilitate risk evaluation supplementary to a safety case. The model was validated against benchmark calculations provided by Radioactive Waste Management Ltd. The base case calculations suggest that the predicted risks to the potential exposed groups are well below, approximately 2 orders, the recommended risk guidance level of 1 × 10−6 per year. A number of sensitivity studies were carried out to identify the importance of various factors that could influence the predicted risks. Sensitivity analysis indicated that the most influential sensitivities on the annual risk posed by geological disposal were the depth and rate at which spent nuclear fuel dissolved in contact with groundwater. The pathways available for groundwater flow to the biosphere were also noted to significantly alter the peak risk observed; crucially almost all sensitivities did not increase the peak risk to within 1 order of magnitude below the recommended risk guidance level. Validation for a second hypothetical high strength rock geological setting resulted in higher projected predicted risks to the potential exposed groups although risk levels remained below the recommended risk guidance level. This suggests a clay environment may have favourable characteristics for the final disposal of spent nuclear fuel compared to a high strength rock alternative

    A proposal of a standardised nomenclature for terminal minute sister chromatid exchanges

    No full text
    We described spontaneous minute sister chromatid exchanges (SCE) in telomeric regions of human and Chinese hamster ovary (CHO) chromosomes more than 10 years ago. These structures, which we called t-SCE, were detected by means of highly precise quantitative microphotometrical scanning and computer graphic image analysis. Recently, several authors using the CO-FISH method also found small SCEs in telomeric regions and called them T-SCE. The use of different terms for designating the same phenomenon should be avoided. We propose ter SCE as a uniform nomenclature for minute telomeric SCEs
    corecore