29 research outputs found

    Prostate-Specific Ets (PSE) factor: a novel marker for detection of metastatic breast cancer in axillary lymph nodes

    Get PDF
    Prostate Specific Ets factor is a recently identified transcriptional activator that is overexpressed in prostate cancer. To determine whether this gene is overexpressed in breast cancer, we performed a virtual Northern blot using data available online at the Cancer Genome Anatomy Project website. Ninety-five SAGE libraries were probed with a unique sequence tag to the Prostate Specific Ets gene. The results indicate that Prostate Specific Ets is expressed in 14 out of 15 breast cancer libraries (93%), nine out of 10 prostate cancer libraries (90%), three out of 40 libraries from other cancers (7.5%), and four out of 30 normal tissue libraries (13%). To determine the possibility that the Prostate Specific Ets gene is a novel marker for detection of metastatic breast cancer in axillary lymph nodes, quantitative real-time RT–PCR analyses were performed. The mean level of Prostate Specific Ets expression in lymph nodes containing metastatic breast cancer (n=22) was 410-fold higher than in normal lymph node (n=51). A receiver operator characteristic curve analysis indicated that Prostate Specific Ets was overexpressed in 18 out of 22 lymph nodes containing metastatic breast cancer (82%). The receiver operator characteristic curve analysis also indicated that the diagnostic accuracy of the Prostate Specific Ets gene for detection of metastatic breast cancer in axillary lymph nodes was 0.949. These results provide evidence that Prostate Specific Ets is a potentially informative novel marker for detection of metastatic breast cancer in axillary lymph nodes, and should be included in any study that involves molecular profiling of breast cancer

    Modified f(R) gravity from scalar-tensor theory and inhomogeneous EoS dark energy

    Get PDF
    The reconstruction of f(R)-gravity is showed by using an auxiliary scalar field in the context of cosmological evolution, this development provide a way of reconstruct the form of the function f (R) for a given evolution of the Hubble parameter. In analogy, f(R)-gravity may be expressed by a perfect fluid with an inhomogeneous equation of state that depends on the Hubble parameter and its derivatives. This mathematical equivalence that may confuse about the origin of the mechanism that produces the current acceleration, and possibly the whole evolution of the Hubble parameter, is shown here.Comment: 8 page

    Ξ²2microglobulin mRNA expression levels are prognostic for lymph node metastasis in colorectal cancer patients

    Get PDF
    Colorectal cancer (CRC) is the fourth most common non-cutaneous malignancy in the United States and the second most frequent cause of cancer-related death. One of the most important determinants of CRC survival is lymph node metastasis. To determine whether molecular markers might be prognostic for lymph node metastases, we measured by quantitative real-time RT–PCR the expression levels of 15 cancer-associated genes in formalin-fixed paraffin-embedded primary tissues derived from stage I–IV CRC patients with (n=20) and without (n=18) nodal metastases. Using the mean of the 15 genes as an internal reference control, we observed that low expression of Ξ²2microglobulin (B2M) was a strong prognostic indicator of lymph node metastases (area under the curve (AUC)=0.85; 95% confidence interval (CI)=0.69–0.94). We also observed that the expression ratio of B2M/Spint2 had the highest prognostic accuracy (AUC=0.87; 95% CI=0.71–0.96) of all potential two-gene combinations. Expression values of Spint2 correlated with the mean of the entire gene set at an R2 value of 0.97, providing evidence that Spint2 serves not as an independent prognostic gene, but rather as a reliable reference control gene. These studies are the first to demonstrate a prognostic role of B2M at the mRNA level and suggest that low B2M expression levels might be useful for identifying patients with lymph node metastasis and/or poor survival

    SPARC: a matricellular regulator of tumorigenesis

    Get PDF
    Although many clinical studies have found a correlation of SPARC expression with malignant progression and patient survival, the mechanisms for SPARC function in tumorigenesis and metastasis remain elusive. The activity of SPARC is context- and cell-type-dependent, which is highlighted by the fact that SPARC has shown seemingly contradictory effects on tumor progression in both clinical correlative studies and in animal models. The capacity of SPARC to dictate tumorigenic phenotype has been attributed to its effects on the bioavailability and signaling of integrins and growth factors/chemokines. These molecular pathways contribute to many physiological events affecting malignant progression, including extracellular matrix remodeling, angiogenesis, immune modulation and metastasis. Given that SPARC is credited with such varied activities, this review presents a comprehensive account of the divergent effects of SPARC in human cancers and mouse models, as well as a description of the potential mechanisms by which SPARC mediates these effects. We aim to provide insight into how a matricellular protein such as SPARC might generate paradoxical, yet relevant, tumor outcomes in order to unify an apparently incongruent collection of scientific literature

    Nephrotic syndrome

    No full text
    corecore