16 research outputs found

    Intra- and Interspecies Genomic Transfer of the Enterococcus faecalis Pathogenicity Island

    Get PDF
    Enterococci are the third leading cause of hospital associated infections and have gained increased importance due to their fast adaptation to the clinical environment by acquisition of antibiotic resistance and pathogenicity traits. Enterococcus faecalis harbours a pathogenicity island (PAI) of 153 kb containing several virulence factors including the enterococcal surface protein (esp). Until now only internal fragments of the PAI or larger chromosomal regions containing it have been transfered. Here we demonstrate precise excision, circularization and horizontal transfer of the entire PAI element from the chromosome of E. faecalis strain UW3114. This PAI (ca. 200 kb) contained some deletions and insertions as compared to the PAI of the reference strain MMH594, transferred precisely and integrated site-specifically into the chromosome of E. faecalis (intergenic region) and Enterococcus faecium (tRNAlys). The internal PAI structure was maintained after transfer. We assessed phenotypic changes accompanying acquisition of the PAI and expression of some of its determinants. The esp gene is expressed on the surface of donor and both transconjugants. Biofilm formation and cytolytic activity were enhanced in E. faecalis transconjugants after acquisition of the PAI. No differences in pathogenicity of E. faecalis were detected using a mouse bacteraemia and a mouse peritonitis models (tail vein and intraperitoneal injection). A 66 kb conjugative pheromone-responsive plasmid encoding erm(B) (pLG2) that was transferred in parallel with the PAI was sequenced. pLG2 is a pheromone responsive plasmid that probably promotes the PAI horizontal transfer, encodes antibiotic resistance features and contains complete replication and conjugation modules of enterococcal origin in a mosaic-like composition. The E. faecalis PAI can undergo precise intra- and interspecies transfer probably with the help of conjugative elements like conjugative resistance plasmids, supporting the role of horizontal gene transfer and antibiotic selective pressure in the successful establishment of certain enterococci as nosocomial pathogens

    IS element IS16 as a molecular screening tool to identify hospital-associated strains of Enterococcus faecium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hospital strains of <it>Enterococcus faecium </it>could be characterized and typed by various molecular methods (MLST, AFLP, MLVA) and allocated to a distinct clonal complex known as MLST CC17. However, these techniques are laborious, time-consuming and cost-intensive. Our aim was to identify hospital <it>E. faecium </it>strains and differentiate them from colonizing and animal variants by a simple, inexpensive and reliable PCR-based screening assay. We describe here performance and predictive value of a single PCR detecting the insertion element, IS<it>16</it>, to identify hospital <it>E. faecium </it>isolates within a collection of 260 strains of hospital, animal and human commensal origins.</p> <p>Methods</p> <p>Specific primers were selected amplifying a 547-bp fragment of IS<it>16</it>. Presence of IS<it>16 </it>was determined by PCR screenings among the 260 <it>E. faecium </it>isolates. Distribution of IS<it>16 </it>was compared with a prevalence of commonly used markers for hospital strains, <it>esp </it>and <it>hyl</it><sub><it>Efm</it></sub>. All isolates were typed by MLST and partly by PFGE. Location of IS<it>16 </it>was analysed by Southern hybridization of plasmid and chromosomal DNA.</p> <p>Results</p> <p>IS<it>16 </it>was exclusively distributed only among 155 invasive strains belonging to the clonal complex of hospital-associated strains ("CC17"; 28 MLST types) and various vancomycin resistance genotypes (<it>van</it>A/B/negative). The five invasive IS<it>16</it>-negative strains did not belong to the clonal complex of hospital-associated strains (CC17). IS<it>16 </it>was absent in all but three isolates from 100 livestock, food-associated and human commensal strains ("non-CC17"; 64 MLST types). The three IS<it>16</it>-positive human commensal isolates revealed MLST types belonging to the clonal complex of hospital-associated strains (CC17). The values predicting a hospital-associated strain ("CC17") deduced from presence and absence of IS<it>16 </it>was 100% and thus superior to screening for the presence of <it>esp </it>(66%) and/or <it>hyl</it><sub><it>Efm </it></sub>(46%). Southern hybridizations revealed chromosomal as well as plasmid localization of IS<it>16</it>.</p> <p>Conclusions</p> <p>This simple screening assay for insertion element IS<it>16 </it>is capable of differentiating hospital-associated from human commensal, livestock- and food-associated <it>E. faecium </it>strains and thus allows predicting the epidemic strengths or supposed pathogenic potential of a given <it>E. faecium </it>isolate identified within the nosocomial setting.</p

    IS element IS16 as a molecular screening tool to identify hospital-associated strains of Enterococcus faecium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hospital strains of <it>Enterococcus faecium </it>could be characterized and typed by various molecular methods (MLST, AFLP, MLVA) and allocated to a distinct clonal complex known as MLST CC17. However, these techniques are laborious, time-consuming and cost-intensive. Our aim was to identify hospital <it>E. faecium </it>strains and differentiate them from colonizing and animal variants by a simple, inexpensive and reliable PCR-based screening assay. We describe here performance and predictive value of a single PCR detecting the insertion element, IS<it>16</it>, to identify hospital <it>E. faecium </it>isolates within a collection of 260 strains of hospital, animal and human commensal origins.</p> <p>Methods</p> <p>Specific primers were selected amplifying a 547-bp fragment of IS<it>16</it>. Presence of IS<it>16 </it>was determined by PCR screenings among the 260 <it>E. faecium </it>isolates. Distribution of IS<it>16 </it>was compared with a prevalence of commonly used markers for hospital strains, <it>esp </it>and <it>hyl</it><sub><it>Efm</it></sub>. All isolates were typed by MLST and partly by PFGE. Location of IS<it>16 </it>was analysed by Southern hybridization of plasmid and chromosomal DNA.</p> <p>Results</p> <p>IS<it>16 </it>was exclusively distributed only among 155 invasive strains belonging to the clonal complex of hospital-associated strains ("CC17"; 28 MLST types) and various vancomycin resistance genotypes (<it>van</it>A/B/negative). The five invasive IS<it>16</it>-negative strains did not belong to the clonal complex of hospital-associated strains (CC17). IS<it>16 </it>was absent in all but three isolates from 100 livestock, food-associated and human commensal strains ("non-CC17"; 64 MLST types). The three IS<it>16</it>-positive human commensal isolates revealed MLST types belonging to the clonal complex of hospital-associated strains (CC17). The values predicting a hospital-associated strain ("CC17") deduced from presence and absence of IS<it>16 </it>was 100% and thus superior to screening for the presence of <it>esp </it>(66%) and/or <it>hyl</it><sub><it>Efm </it></sub>(46%). Southern hybridizations revealed chromosomal as well as plasmid localization of IS<it>16</it>.</p> <p>Conclusions</p> <p>This simple screening assay for insertion element IS<it>16 </it>is capable of differentiating hospital-associated from human commensal, livestock- and food-associated <it>E. faecium </it>strains and thus allows predicting the epidemic strengths or supposed pathogenic potential of a given <it>E. faecium </it>isolate identified within the nosocomial setting.</p

    Dynamics of ampicillin-resistant Enterococcus faecium clones colonizing hospitalized patients: data from a prospective observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the dynamics of colonizing <it>Enterococcus faecium </it>clones during hospitalization, invasive infection and after discharge.</p> <p>Methods</p> <p>In a prospective observational study we compared intestinal <it>E. faecium </it>colonization in three patient cohorts: 1) Patients from the Hematology Unit at the University Hospital Basel (UHBS), Switzerland, were investigated by weekly rectal swabs (RS) during hospitalization (group 1a, n = 33) and monthly after discharge (group 1b, n = 21). 2) Patients from the Intensive Care Unit (ICU) at the University Medical Center Utrecht, the Netherlands (group 2, n = 25) were swabbed weekly. 3) Patients with invasive <it>E. faecium </it>infection at UHBS were swabbed at the time of infection (group 3, n = 22). From each RS five colonies with typical <it>E</it>. <it>faecium </it>morphology were picked. Species identification was confirmed by PCR and ampicillin-resistant <it>E. faecium </it>(ARE) isolates were typed using Multiple Locus Variable Number Tandem Repeat Analysis (MLVA). The Simpson's Index of Diversity (SID) was calculated.</p> <p>Results</p> <p>Out of 558 ARE isolates from 354 RS, MT159 was the most prevalent clone (54%, 100%, 52% and 83% of ARE in groups 1a, 1b, 2 and 3, respectively). Among hematological inpatients 13 (40%) had ARE. During hospitalization, the SID of MLVA-typed ARE decreased from 0.745 [95%CI 0.657-0.833] in week 1 to 0.513 [95%CI 0.388-0.637] in week 3. After discharge the only detected ARE was MT159 in 3 patients. In the ICU (group 2) almost all patients (84%) were colonized with ARE. The SID increased significantly from 0.373 [95%CI 0.175-0.572] at week 1 to a maximum of 0.808 [95%CI 0.768-0.849] at week 3 due to acquisition of multiple ARE clones. All 16 patients with invasive ARE were colonized with the same MLVA clone (<it>p </it>< 0.001).</p> <p>Conclusions</p> <p>In hospitalized high-risk patients MT159 is the most frequent colonizer and cause of invasive <it>E. faecium </it>infections. During hospitalization, ASE are quickly replaced by ARE. Diversity of ARE increases on units with possible cross-transmission such as ICUs. After hospitalization ARE are lost with the exception of MT159. In invasive infections, the invasive clone is the predominant gut colonizer.</p

    Comprehensive molecular, genomic and phenotypic analysis of a major clone of Enterococcus faecalis MLST ST40

    Get PDF
    corecore