57 research outputs found

    Genome-Wide Analysis of Effectors of Peroxisome Biogenesis

    Get PDF
    Peroxisomes are intracellular organelles that house a number of diverse metabolic processes, notably those required for β-oxidation of fatty acids. Peroxisomes biogenesis can be induced by the presence of peroxisome proliferators, including fatty acids, which activate complex cellular programs that underlie the induction process. Here, we used multi-parameter quantitative phenotype analyses of an arrayed mutant collection of yeast cells induced to proliferate peroxisomes, to establish a comprehensive inventory of genes required for peroxisome induction and function. The assays employed include growth in the presence of fatty acids, and confocal imaging and flow cytometry through the induction process. In addition to the classical phenotypes associated with loss of peroxisomal functions, these studies identified 169 genes required for robust signaling, transcription, normal peroxisomal development and morphologies, and transmission of peroxisomes to daughter cells. These gene products are localized throughout the cell, and many have indirect connections to peroxisome function. By integration with extant data sets, we present a total of 211 genes linked to peroxisome biogenesis and highlight the complex networks through which information flows during peroxisome biogenesis and function

    Acinetobacter baumannii Secretes Cytotoxic Outer Membrane Protein A via Outer Membrane Vesicles

    Get PDF
    Acinetobacter baumannii is an important nosocomial pathogen that causes a high morbidity and mortality rate in infected patients, but pathogenic mechanisms of this microorganism regarding the secretion and delivery of virulence factors to host cells have not been characterized. Gram-negative bacteria naturally secrete outer membrane vesicles (OMVs) that play a role in the delivery of virulence factors to host cells. A. baumannii has been shown to secrete OMVs when cultured in vitro, but the role of OMVs in A. baumannii pathogenesis is not well elucidated. In the present study, we evaluated the secretion and delivery of virulence factors of A. baumannii to host cells via the OMVs and assessed the cytotoxic activity of outer membrane protein A (AbOmpA) packaged in the OMVs. A. baumannii ATCC 19606T secreted OMVs during in vivo infection as well as in vitro cultures. Potential virulence factors, including AbOmpA and tissue-degrading enzymes, were associated with A. baumannii OMVs. A. baumannii OMVs interacted with lipid rafts in the plasma membranes and then delivered virulence factors to host cells. The OMVs from A. baumannii ATCC 19606T induced apoptosis of host cells, whereas this effect was not detected in the OMVs from the ΔompA mutant, thereby reflecting AbOmpA-dependent host cell death. The N-terminal region of AbOmpA22-170 was responsible for host cell death. In conclusion, the OMV-mediated delivery of virulence factors to host cells may well contribute to pathogenesis during A. baumannii infection

    Sympathetic involvement in time-constrained sequential foraging

    Get PDF
    Appraising sequential offers relative to an unknown future opportunity and a time cost requires an optimization policy that draws on a learned estimate of an environment’s richness. Converging evidence points to a learning asymmetry, whereby estimates of this richness update with a bias toward integrating positive information. We replicate this bias in a sequential foraging (prey selection) task and probe associated activation within the sympathetic branch of the autonomic system, using trial-by-trial measures of simultaneously recorded cardiac autonomic physiology. We reveal a unique adaptive role for the sympathetic branch in learning. It was specifically associated with adaptation to a deteriorating environment: it correlated with both the rate of negative information integration in belief estimates and downward changes in moment-to-moment environmental richness, and was predictive of optimal performance on the task. The findings are consistent with a framework whereby autonomic function supports the learning demands of prey selection

    Protein- and zinc-deficient diets modulate the murine microbiome and metabolic phenotype

    No full text
    Background: Environmental enteropathy, linked to undernutrition and chronic infections, affects the physical and mental growth of children in developing areas worldwide. Key to understanding how these factors combine to shape developmental outcomes is first understanding the effects of nutritional deficiencies on the mammalian system, including the effect on the gut microbiota. Objective: We dissect the nutritional components of environmental enteropathy by analyzing the specific metabolic and gut microbiota changes that occur in weaned mouse models of zinc or protein deficiency as compared to well-nourished controls. Design: Using a 1H NMR spectroscopy-based metabolic profiling approach with matching 16S microbiota analyses, the metabolic consequences and specific effects on the fecal microbiota of protein and zinc deficiency were probed independently in a murine model. Results: We find considerable shifts within the intestinal microbiota 14-24d post-weaning in mice maintained on a normal diet (including increases in Proteobacteria and striking decreases in Bacterioidetes). While the zinc deficient microbiota were comparable to the age-matched well-nourished profile, the protein-restricted microbiota remained closer in composition to the weaned enterotype with retention of Bacteroidetes. Striking increases in Verrucomicrobia (predominantly Akkermansia muciniphila) were observed in both well-nourished and protein-deficient mice 14d post-weaning. We find that protein malnutrition impairs growth and has major metabolic consequences (much more than zinc deficiency) that include altered energy, polyamine and purine/pyrimidine metabolism. Consistent with major changes in the gut microbiota, reductions in microbial proteolysis and increases in microbial dietary choline processing were observed

    DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts

    Full text link
    In the search for specific genes regulated by DNA methylation in rheumatoid arthritis (RA), we investigated the expression of CXCL12 in synovial fibroblasts (SFs) and the methylation status of its promoter and determined its contribution to the expression of matrix metalloproteinases (MMPs). DNA was isolated from SFs and methylation was analyzed by bisulfite sequencing and McrBC assay. CXCL12 protein was quantified by enzyme-linked immunosorbent assay before and after treatment with 5-azacytidine. RASFs were transfected with CXCR7-siRNA and stimulated with CXCL12. Expression of MMPs was analyzed by real-time PCR. Basal expression of CXCL12 was higher in RASFs than osteoarthritis (OA) SFs. 5-azacytidine demethylation increased the expression of CXCL12 and reduced the methylation of CpG nucleotides. A lower percentage of CpG methylation was found in the CXCL12 promoter of RASFs compared with OASFs. Overall, we observed a significant correlation in the mRNA expression and the CXCL12 promoter DNA methylation. Stimulation of RASFs with CXCL12 increased the expression of MMPs. CXCR7 but not CXCR4 was expressed and functional in SFs. We show here that RASFs produce more CXCL12 than OASFs due to promoter methylation changes and that stimulation with CXCL12 activates MMPs via CXCR7 in SFs. Thereby we describe an endogenously activated pathway in RASFs, which promotes joint destruction

    Ecophysiology of photosynthesis in macroalgae

    No full text
    Macroalgae occur in the marine benthos from the upper intertidal to depths of more than 200 m, contributing up to 1 Pg C per year to global primary productivity. Freshwater macroalgae are mainly green (Chlorophyta) with some red (Rhodophyta) and a small contribution of brown (Phaeophyceae) algae, while in the ocean all three higher taxa are important. Attempts to relate the depth distribution of three higher taxa of marine macroalgae to their photosynthetic light use through their pigmentation in relation to variations in spectral quality of photosynthetically active radiation (PAR) with depth (complementary chromatic adaptation) and optical thickness (package effect) have been relatively unsuccessful. The presence (Chlorophyta, Phaeophyceae) or absence (Rhodophyta) of a xanthophyll cycle is also not well correlated with depth distribution of marine algae. The relative absence of freshwater brown algae does not seem to be related to their photosynthetic light use. Photosynthetic inorganic carbon acquisition in some red and a few green macroalgae involves entry of CO2 by diffusion. Other red and green macroalgae, and brown macroalgae, have CO2 concentrating mechanisms; these frequently involve acid and alkaline zones on the surface of the alga with CO2 (produced from HCO3-) entering in the acid zones, while some macroalgae have CCMs based on active influx of HCO3-. These various mechanisms of carbon acquisition have different responses to the thickness of the diffusion boundary layer, which is determined by macroalgal morphology and water velocity. Energetic predictions that macroalgae growing at or near the lower limit of PAR for growth should rely on diffusive CO2 entry without acid and alkaline zones, and on NH 4+ rather than NO3- as nitrogen source, are only partially borne out by observation. The impact of global environmental change on marine macroalgae mainly relates to ocean acidification and warming with shoaling of the thermocline and decreased nutrient flux to the upper mixed layer. Predictions of the impact on macroalgae requires further experiments on interactions among increased inorganic carbon, increased temperature and decreased nitrogen and phosphorus supply, and, when possible, studies of genetic adaptation to environmental change. © 2012 Springer Science+Business Media B.V
    • …
    corecore