13 research outputs found

    Equilibrium moisture content of radiata pine at elevated temperature and pressure reveals measurement challenges

    No full text
    Relatively few studies have been performed on the equilibrium moisture content (EMC) of wood under conditions of elevated temperature and pressure. Eight studies indicated that EMC near saturation decreased between 100 and 150 A degrees C, whilst five studies indicated that EMC increased. The aim of this study was to identify the likely source of the disagreement using radiata pine (Pinus radiata D. Don) sapwood which was conditioned to a moisture content of around 3 % and then exposed for 1 h at 150 A degrees C and relative humidities of either 50, 70 or 90 %. Mean values of EMC, obtained through in situ gravimetric analyses, were 5.7, 7.6 and 12.6 % with 95 % confidence intervals of the order of 1 %. In two further experiments, the humidity was allowed to rise briefly above 90 % and the moisture content after 1 h was found to be > 30 % as in the five studies that indicated EMC increased above 100 A degrees C. The high moisture contents were attributed to condensation of liquid water on the specimen with subsequent evaporation at a rate that was too slow for the moisture content to reach equilibrium before it was measured. Reliable EMC data at elevated temperatures require (1) tight process control of experimental conditions with minimal standard error, (2) specimens with low initial moisture content to avoid unwanted wood mass loss over time, (3) a relative humidity upper limit that avoids drift above 95 %, and (4) extrapolation of data to humidity approaching 100 %

    Graph theoretic topology of the Great but small Barrier Reef world

    No full text
    The transport of larvae between coral reefs is critical to the functioning of Australia's Great Barrier Reef (GBR) because it determines recruitment rates and genetic exchange. One way of modelling the transport of larvae from one reef to another is to use information about currents. However the connectivity relationships of the entire system have not been fully examined. Graph theory provides a framework for the representation and analysis of connections via larval transport. In the past, the geometric arrangement (topology) of biological systems, such as food webs and neural networks, has revealed a common set of characteristics known as the 'small world' property. We use graph theory to examine and describe the topology and connectivity of a species living in 321 reefs in the central section of the GBR over 32 years. This section of the GBR can be described by a directional weighted graph, and we discovered that it exhibits scale-free small-world characteristics. The conclusion that the GBR is a small-world network for biological organisms is robust to variation in both the life history of the species modelled and yearly variation in hydrodynamics. The GBR is the first reported mesoscale biological small-world network
    corecore