6 research outputs found

    Transport of Live Cells under Sterile Conditions Using a Chemotactic Droplet

    Get PDF
    © 2018 The Author(s). 1-Decanol droplets, formed in an aqueous medium containing decanoate at high pH, become chemotactic when a chemical gradient is placed in the external aqueous environment. We investigated if such droplets can be used as transporters for living cells. We developed a partially hydrophobic alginate capsule as a protective unit that can be precisely placed in a droplet and transported along chemical gradients. Once the droplets with cargo reached a defined final destination, the association of the alginate capsule and decanol droplet was disrupted and cargo deposited. Both Escherichia coli and Bacillus subtilis cells survived and proliferated after transport even though transport occurred under harsh and sterile conditions

    Design, fabrication and control of soft robots

    Get PDF
    Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.National Science Foundation (U.S.) (Grant IIS-1226883
    corecore