88 research outputs found

    Stretchable, fully polymeric electrode arrays for peripheral nerve stimulation

    Get PDF
    There is a critical need to transition research level flexible polymer bioelectronics toward the clinic by demonstrating both reliability in fabrication and stable device performance. Conductive elastomers (CEs) are composites of conductive polymers in elastomeric matrices that provide both flexibility and enhanced electrochemical properties compared to conventional metallic electrodes. This work focuses on the development of nerve cuff devices and the assessment of the device functionality at each development stage, from CE material to fully polymeric electrode arrays. Two device types are fabricated by laser machining of a thick and thin CE sheet variant on an insulative polydimethylsiloxane substrate and lamination into tubing to produce pre‐curled cuffs. Device performance and stability following sterilization and mechanical loading are compared to a state‐of‐the‐art stretchable metallic nerve cuff. The CE cuffs are found to be electrically and mechanically stable with improved charge transfer properties compared to the commercial cuff. All devices are applied to an ex vivo whole sciatic nerve and shown to be functional, with the CE cuffs demonstrating superior charge transfer and electrochemical safety in the biological environment

    Unusual development of light-reflecting pigment cells in intact and regenerating tail in the periodic albino mutant of Xenopus laevis

    Get PDF
    Unusual light-reflecting pigment cells, “white pigment cells”, specifically appear in the periodic albino mutant (ap/ap) of Xenopus laevis and localize in the same place where melanophores normally differentiate in the wild-type. The mechanism responsible for the development of unusual pigment cells is unclear. In this study, white pigment cells in the periodic albino were compared with melanophores in the wild-type, using a cell culture system and a tail-regenerating system. Observations of both intact and cultured cells demonstrate that white pigment cells are unique in (1) showing characteristics of melanophore precursors at various stages of development, (2) accumulating reflecting platelets characteristic of iridophores, and (3) exhibiting pigment dispersion in response to α-melanocyte stimulating hormone (α-MSH) in the same way that melanophores do. When a tadpole tail is amputated, a functionally competent new tail is regenerated. White pigment cells appear in the mutant regenerating tail, whereas melanophores differentiate in the wild-type regenerating tail. White pigment cells in the mutant regenerating tail are essentially similar to melanophores in the wild-type regenerating tail with respect to their localization, number, and response to α-MSH. In addition to white pigment cells, iridophores which are never present in the intact tadpole tail appear specifically in the somites near the amputation level in the mutant regenerating tail. Iridophores are distinct from white pigment cells in size, shape, blue light-induced fluorescence, and response to α-MSH. These findings strongly suggest that white pigment cells in the mutant arise from melanophore precursors and accumulate reflecting platelets characteristic of iridophores

    Rapid and simultaneous detection of human hepatitis B virus and hepatitis C virus antibodies based on a protein chip assay using nano-gold immunological amplification and silver staining method

    Get PDF
    BACKGROUND: Viral hepatitis due to hepatitis B virus and hepatitis C virus are major public health problems all over the world. Traditional detection methods including polymerase chain reaction (PCR)-based assays and enzyme-linked immunosorbent assays (ELISA) are expensive and time-consuming. In our assay, a protein chip assay using Nano-gold Immunological Amplification and Silver Staining (NIASS) method was applied to detect HBV and HCV antibodies rapidly and simultaneously. METHODS: Chemically modified glass slides were used as solid supports (named chip), on which several antigens, including HBsAg, HBeAg, HBcAg and HCVAg (a mixture of NS3, NS5 and core antigens) were immobilized respectively. Colloidal nano-gold labelled staphylococcal protein A (SPA) was used as an indicator and immunogold silver staining enhancement technique was applied to amplify the detection signals, producing black image on array spots, which were visible with naked eyes. To determine the detection limit of the protein chip assay, a set of model arrays in which human IgG was spotted were structured and the model arrays were incubated with different concentrations of anti-IgG. A total of 305 serum samples previously characterized with commercial ELISA were divided into 4 groups and tested in this assay. RESULTS: We prepared mono-dispersed, spherical nano-gold particles with an average diameter of 15 ± 2 nm. Colloidal nano-gold-SPA particles observed by TEM were well-distributed, maintaining uniform and stable. The optimum silver enhancement time ranged from 8 to 12 minutes. In our assay, the protein chips could detect serum antibodies against HBsAg, HBeAg, HBcAg and HCVAg with the absence of the cross reaction. In the model arrays, the anti-IgG as low as 3 ng/ml could be detected. The data for comparing the protein chip assay with ELISA indicated that no distinct difference (P > 0.05) existed between the results determined by our assay and ELISA respectively. CONCLUSION: Results showed that our assay can be applied with serology for the detection of HBV and HCV antibodies rapidly and simultaneously in clinical detection

    Physiologic and pathologic functions of the NPP nucleotide pyrophosphatase/phosphodiesterase family focusing on NPP1 in calcification

    Get PDF
    The catabolism of ATP and other nucleotides participates partly in the important function of nucleotide salvage by activated cells and also in removal or de novo generation of compounds including ATP, ADP, and adenosine that stimulate purinergic signaling. Seven nucleotide pyrophosphatase/phosphodiesterase NPP family members have been identified to date. These isoenzymes, related by up conservation of catalytic domains and certain other modular domains, exert generally non-redundant functions via distinctions in substrates and/or cellular localization. But they share the capacity to hydrolyze phosphodiester or pyrophosphate bonds, though generally acting on distinct substrates that include nucleoside triphosphates, lysophospholipids and choline phosphate esters. PPi generation from nucleoside triphosphates, catalyzed by NPP1 in tissues including cartilage, bone, and artery media smooth muscle cells, supports normal tissue extracellular PPi levels. Balance in PPi generation relative to PPi degradation by pyrophosphatases holds extracellular PPi levels in check. Moreover, physiologic levels of extracellular PPi suppress hydroxyapatite crystal growth, but concurrently providing a reservoir for generation of pro-mineralizing Pi. Extracellular PPi levels must be supported by cells in mineralization-competent tissues to prevent pathologic calcification. This support mechanism becomes dysregulated in aging cartilage, where extracellular PPi excess, mediated in part by upregulated NPP1 expression stimulates calcification. PPi generated by NPP1modulates not only hydroxyapatite crystal growth but also chondrogenesis and expression of the mineralization regulator osteopontin. This review pays particular attention to the role of NPP1-catalyzed PPi generation in the pathogenesis of certain disorders associated with pathologic calcification

    Plasminogen binding and activation at the breast cancer cell surface: the integral role of urokinase activity

    Get PDF
    INTRODUCTION: The regulation of extracellular proteolytic activity via the plasminogen activation system is complex, involving numerous activators, inhibitors, and receptors. Previous studies on monocytic and colon cell lines suggest that plasmin pre-treatment can increase plasminogen binding, allowing the active enzyme to generate binding sites for its precursor. Other studies have shown the importance of pre-formed receptors such as annexin II heterotetramer. However, few studies have used techniques that exclusively characterise cell-surface events and these mechanisms have not been investigated at the breast cancer cell surface. METHODS: We have studied plasminogen binding to MCF-7 in which urokinase plasminogen activator receptor (uPAR) levels were upregulated by PMA (12-O-tetradecanoylphorbol-13-acetate) stimulation, allowing flexible and transient modulation of cell-surface uPA. Similar experiments were also performed using MDA-MB-231 cells, which overexpress uPAR/uPA endogenously. Using techniques that preserve cell integrity, we characterise the role of uPA as both a plasminogen receptor and activator and quantify the relative contribution of pre-formed and cryptic plasminogen receptors to plasminogen binding. RESULTS: Cell-surface plasminogen binding was significantly enhanced in the presence of elevated levels of uPA in an activity-dependent manner and was greatly attenuated in the presence of the plasmin inhibitor aprotinin. Pre-formed receptors were also found to contribute to increased plasminogen binding after PMA stimulation and to co-localise with uPA/uPAR and plasminogen. Nevertheless, a relatively modest increase in plasminogen-binding capacity coupled with an increase in uPA led to a dramatic increase in the proteolytic capacity of these cells. CONCLUSION: We show that the majority of lysine-dependent plasminogen binding to breast cancer cells is ultimately regulated by plasmin activity and is dependent on the presence of significant levels of active uPA. The existence of a proteolytic positive feedback loop in plasminogen activation has profound implications for the ability of breast cancer cells expressing high amounts of uPA to accumulate a large proteolytic capacity at the cell surface, thereby conferring invasive potential

    Targeting the hedgehog transcription factors GLI1 and GLI2 restores sensitivity to vemurafenib-resistant human melanoma cells

    Get PDF
    BRAF inhibitor (BRAFi) therapy for melanoma patients harboring the V600E mutation is initially highly effective, but almost all patients relapse within a few months. Understanding the molecular mechanisms underpinning BRAFi-based therapy is therefore an important issue. Here we identified a previously unsuspected mechanism of BRAFi resistance driven by elevated Hedgehog (Hh) pathway activation that is observed in a cohort of melanoma patients after vemurafenib treatment. Specifically, we demonstrate that melanoma cell lines, with acquired in vitro-induced vemurafenib resistance, show increased levels of glioma-associated oncogene homolog 1 and 2 (GLI1/GLI2) compared with naive cells. We also observed these findings in clinical melanoma specimens. Moreover, the increased expression of the transcription factors GLI1/GLI2 was independent of canonical Hh signaling and was instead correlated with the noncanonical Hh pathway, involving TGF beta/SMAD (transforming growth factor-beta/Sma- and Mad-related family) signaling. Knockdown of GLI1 and GLI2 restored sensitivity to vemurafenib-resistant cells, an effect associated with both growth arrest and senescence. Treatment of vemurafenib-resistant cells with the GLI1/GLI2 inhibitor Gant61 led to decreased invasion of the melanoma cells in a three-dimensional skin reconstruct model and was associated with a decrease in metalloproteinase (MMP2/MMP9) expression and microphthalmia transcription factor upregulation. Gant61 monotherapy did not alter the drug sensitivity of naive cells, but could reverse the resistance of melanoma cells chronically treated with vemurafenib. We further noted that alternating dosing schedules of Gant61 and vemurafenib prevented the onset of BRAFi resistance, suggesting that this could be a potential therapeutic strategy for the prevention of therapeutic escape. Our results suggest that targeting the Hh pathway in BRAFi-resistant melanoma may represent a viable therapeutic strategy to restore vemurafenib sensitivity, reducing or even inhibiting the acquired chemoresistance in melanoma patients.Fapesp-grant number 2012/04194-1, 2013/05172-4, 2014/24400-0 and 2015/10821-7, CNPq-grant number 150447/2013-2 and 471512/2013-3 and PRODOC-grant no 3193-32/2010. Work in the lab of KS Smalley was supported by the National Institutes of Health grants R01 CA161107, R21 CA198550, and Skin SPORE grant P50 CA168536info:eu-repo/semantics/publishedVersio

    Modulation of purinergic signaling by NPP-type ectophosphodiesterases

    Get PDF
    Extracellular nucleotides can elicit a wide array of cellular responses by binding to specific purinergic receptors. The level of ectonucleotides is dynamically controlled by their release from cells, synthesis by ectonucleoside diphosphokinases and ectoadenylate kinases, and hydrolysis by ectonucleotidases. One of the four structurally unrelated families of ectonucleotidases is represented by the NPP-type ectophosphodiesterases. Three of the seven members of the NPP family, namely NPP1–3, are known to hydrolyze nucleotides. The enzymatic action of NPP1–3 (in)directly results in the termination of nucleotide signaling, the salvage of nucleotides and/or the generation of new messengers like ADP, adenosine or pyrophosphate. NPP2 is unique in that it hydrolyzes both nucleotides and lysophospholipids and, thereby, generates products that could synergistically promote cell motility. We review here the enzymatic properties of NPPs and analyze current evidence that links their nucleotide-hydrolyzing capability to epithelial and neural functions, the immune response and cell motility

    Purinergic signalling and immune cells

    Get PDF
    This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells
    corecore