13 research outputs found

    Novel somatic mutations in UBA1 as a cause of VEXAS syndrome

    No full text
    Somatic mutations at methionine 41 (Met41) in UBA1, encoding the major E1 enzyme responsible for initiating ubiquitylation, were recently identified as the cause of a novel autoinflammatory disease, named VEXAS (Vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic). We sought to determine the prevalence of UBA1 mutations in a UK cohort of patients matching the VEXAS clinical phenotype. We identified 10 new patients with somatic mutations in UBA1, but only 8 had altered p.Met41. A novel variant, c.167C>T; p.Ser56Phe was identified, which was present in myeloid, and not lymphoid lineages and led to preferential loss of the catalytic activity of cytoplasmic UBA1. An additional novel variant, c.118-1G>C was identified at the splice acceptor site of exon 3 leading to altered splicing in vitro. Bone marrow biopsies from two patients with a Met41 substitution and the novel splice site variant were consistent with previously reported features of VEXAS. The bone marrow of the patient with the p.Ser56Phe variant was less similar, likely driven by a distinct but overlapping disease mechanism. Our study therefore confirms somatic p.Met41 substitutions in UBA1 as a major cause of VEXAS syndrome and identifies two new disease causing mutations

    Translation of cytoplasmic UBA1 contributes to VEXAS syndrome pathogenesis

    No full text
    Somatic mutations in UBA1 cause VEXAS (Vacuoles, E1 ubiquitin activating enzyme, X-linked, Autoinflammatory Somatic) syndrome, an adult-onset inflammatory disease with an overlap of hematologic manifestations. VEXAS syndrome is characterized by a high mortality rate and significant clinical heterogeneity. We sought to determine independent predictors of survival in VEXAS and to understand the mechanistic basis for these factors. We analyzed 83 patients with somatic pathogenic variants in UBA1 at p.Met41 (p.Met41Leu/Thr/Val), the start codon for translation of the cytoplasmic isoform of UBA1 (UBA1b). Patients with the p.Met41Val genotype were most likely to have an undifferentiated inflammatory syndrome. Multivariate analysis showed ear chondritis was associated with increased survival, while transfusion dependence and the p.Met41Val variant were independently associated with decreased survival. Using in vitro models and patient-derived cells, we demonstrate that p.Met41Val variant supports less UBA1b translation than either p.Met41Leu or p.Met41Thr, providing a molecular rationale for decreased survival. In addition, we show that these three canonical VEXAS variants produce more UBA1b than any of the six other possible single nucleotide variants within this codon. Finally, we report a patient, clinically diagnosed with VEXAS syndrome, with two novel mutations in UBA1 occurring in cis on the same allele. One mutation (c.121 A>T; p.Met41Leu) caused severely reduced translation of UBA1b in a reporter assay, but co-expression with the second mutation (c.119 G>C; p.Gly40Ala) rescued UBA1b levels to those of canonical mutations. We conclude that regulation of residual UBA1b translation is fundamental to the pathogenesis of VEXAS syndrome and contributes to disease prognosis

    Translation of cytoplasmic UBA1 contributes to VEXAS syndrome pathogenesis

    No full text
    Somatic mutations in UBA1 cause VEXAS (Vacuoles, E1 ubiquitin activating enzyme, X-linked, Autoinflammatory Somatic) syndrome, an adult-onset inflammatory disease with an overlap of hematologic manifestations. VEXAS syndrome is characterized by a high mortality rate and significant clinical heterogeneity. We sought to determine independent predictors of survival in VEXAS and to understand the mechanistic basis for these factors. We analyzed 83 patients with somatic pathogenic variants in UBA1 at p.Met41 (p.Met41Leu/Thr/Val), the start codon for translation of the cytoplasmic isoform of UBA1 (UBA1b). Patients with the p.Met41Val genotype were most likely to have an undifferentiated inflammatory syndrome. Multivariate analysis showed ear chondritis was associated with increased survival, while transfusion dependence and the p.Met41Val variant were independently associated with decreased survival. Using in vitro models and patient-derived cells, we demonstrate that p.Met41Val variant supports less UBA1b translation than either p.Met41Leu or p.Met41Thr, providing a molecular rationale for decreased survival. In addition, we show that these three canonical VEXAS variants produce more UBA1b than any of the six other possible single nucleotide variants within this codon. Finally, we report a patient, clinically diagnosed with VEXAS syndrome, with two novel mutations in UBA1 occurring in cis on the same allele. One mutation (c.121 A>T; p.Met41Leu) caused severely reduced translation of UBA1b in a reporter assay, but co-expression with the second mutation (c.119 G>C; p.Gly40Ala) rescued UBA1b levels to those of canonical mutations. We conclude that regulation of residual UBA1b translation is fundamental to the pathogenesis of VEXAS syndrome and contributes to disease prognosis
    corecore