36 research outputs found

    A finite element study to assess fracture risk in humans with low bone density

    Get PDF
    Osteoporosis is a bone-related illness which causes a reduction in bone density, where affected individuals have a higher risk of fracture. This research uses current Finite Element Analysis (FEA) techniques such as geometric modelling, meshing, application of materials, loading and boundary conditions, and captures time-dependent simulation data. The aim was to study the physical properties of the Human Clavicle bone. The focus was on transverse fractures in compression loading. Previous research is detailed showing the impact of pathological fractures and its effect on the bone, this comprises of theoretical and experimental results. The study demonstrates the correlation between the reduction in density and the increase in fracture risk. Thus, showing the importance of the FEA data and its uses in future applications of which encompass design, diagnostics and research

    Following the genes: a framework for animal modeling of psychiatric disorders

    Get PDF
    The number of individual cases of psychiatric disorders that can be ascribed to identified, rare, single mutations is increasing with great rapidity. Such mutations can be recapitulated in mice to generate animal models with direct etiological validity. Defining the underlying pathogenic mechanisms will require an experimental and theoretical framework to make the links from mutation to altered behavior in an animal or psychopathology in a human. Here, we discuss key elements of such a framework, including cell type-based phenotyping, developmental trajectories, linking circuit properties at micro and macro scales and definition of neurobiological phenotypes that are directly translatable to humans

    Inflammatory mediators in intra-abdominal sepsis or injury – a scoping review

    Full text link
    corecore