1 research outputs found
Magnetoresistance and dephasing in a two-dimensional electron gas at intermediate conductances
We study, both theoretically and experimentally, the negative
magnetoresistance (MR) of a two-dimensional (2D) electron gas in a weak
transverse magnetic field . The analysis is carried out in a wide range of
zero- conductances (measured in units of ), including the range
of intermediate conductances, . Interpretation of the experimental
results obtained for a 2D electron gas in GaAs/InGaAs/GaAs single
quantum well structures is based on the theory which takes into account terms
of higher orders in , stemming from both the interference contribution and
the mutual effect of weak localization (WL) and Coulomb interaction. We
demonstrate that at intermediate conductances the negative MR is described by
the standard WL "digamma-functions" expression, but with a reduced prefactor
. We also show that at not very high the second-loop corrections
dominate over the contribution of the interaction in the Cooper channel, and
therefore appear to be the main source of the lowering of the prefactor,
. We further analyze the regime of a "weak insulator",
when the zero- conductance is low due to the localization at low
, whereas the Drude conductance is high, In this regime, while the
MR still can be fitted by the digamma-functions formula, the experimentally
obtained value of the dephasing rate has nothing to do with the true one. The
corresponding fitting parameter in the low- limit is determined by the
localization length and may therefore saturate at , even though the
true dephasing rate vanishes.Comment: 36 pages, 16 figure