69 research outputs found

    Some properties of the newly observed X(1835) state at BES

    Full text link
    Recently the BES collaboration has announced observation of a resonant state in the π+πη\pi^+\pi^- \eta' spectrum in J/ψγπ+πηJ/\psi \to \gamma \pi^+\pi^-\eta' decay. Fitting the data with a 0+0^{-+} state, the mass is determined to be 1833.7 MeV with 7.7σ7.7\sigma statistic significance. This state is consistent with the one extracted from previously reported ppˉp \bar p threshold enhancement data in J/ψγppˉJ/\psi \to \gamma p \bar p. We study the properties of this state using QCD anomaly and QCD sum rules assuming X(1835) to be a pseudoscalar and show that it is consistent with data. We find that this state has a sizeable matrix element leading to branching ratios of (2.617.37)×103(2.61\sim 7.37)\times 10^{-3} and (2.2110.61)×102(2.21\sim 10.61)\times 10^{-2} for J/ψγGpJ/\psi \to \gamma G_p and for Gpπ+πηG_p \to \pi^+\pi^- \eta', respectively. Combining the calculated branching ratio of J/ψγGpJ/\psi \to \gamma G_p and data on threshold enhancement in J/ψγppˉJ/\psi \to \gamma p \bar p, we determine the coupling for GpppˉG_p- p-\bar p interaction. We finally study branching ratios of other J/ψγ+threemesonsJ/\psi \to \gamma + {three mesons} decay modes. We find that J/ψγGpγ(π+πη,KKπ0)J/\psi \to \gamma G_p \to \gamma (\pi^+\pi^- \eta, K K \pi^0) can provide useful tests for the mechanism proposed.Comment: 13 pages, 3 figures. The final version to appear at EPJ

    Microtubule Acetylation Is Required for Mechanosensation in Drosophila

    Get PDF
    At the cellular level, α-tubulin acetylation alters the structure of microtubules to render them mechanically resistant to compressive forces. How this biochemical property of microtubule acetylation relates to mechanosensation remains unknown, although prior studies have shown that microtubule acetylation influences touch perception. Here, we identify the major Drosophila α-tubulin acetylase (dTAT) and show that it plays key roles in several forms of mechanosensation. dTAT is highly expressed in the larval peripheral nervous system (PNS), but it is largely dispensable for neuronal morphogenesis. Mutation of the acetylase gene or the K40 acetylation site in α-tubulin impairs mechanical sensitivity in sensory neurons and behavioral responses to gentle touch, harsh touch, gravity, and vibration stimuli, but not noxious thermal stimulus. Finally, we show that dTAT is required for mechanically induced activation of NOMPC, a microtubule-associated transient receptor potential channel, and functions to maintain integrity of the microtubule cytoskeleton in response to mechanical stimulation. Yan et al. identify the major microtubule acetylase in Drosophila and show that the enzyme and microtubule acetylation broadly control mechanosensation, but not other sensory modalities. Acetylation is required for mechanosensation by the TRP channel NOMPC, and possibly other channels, by virtue of its effects on microtubule mechanical stability and/or dynamics

    HighP–TNano-Mechanics of Polycrystalline Nickel

    Get PDF
    We have conducted highP–Tsynchrotron X-ray and time-of-flight neutron diffraction experiments as well as indentation measurements to study equation of state, constitutive properties, and hardness of nanocrystalline and bulk nickel. Our lattice volume–pressure data present a clear evidence of elastic softening in nanocrystalline Ni as compared with the bulk nickel. We show that the enhanced overall compressibility of nanocrystalline Ni is a consequence of the higher compressibility of the surface shell of Ni nanocrystals, which supports the results of molecular dynamics simulation and a generalized model of a nanocrystal with expanded surface layer. The analytical methods we developed based on the peak-profile of diffraction data allow us to identify “micro/local” yield due to high stress concentration at the grain-to-grain contacts and “macro/bulk” yield due to deviatoric stress over the entire sample. The graphic approach of our strain/stress analyses can also reveal the corresponding yield strength, grain crushing/growth, work hardening/softening, and thermal relaxation under highP–Tconditions, as well as the intrinsic residual/surface strains in the polycrystalline bulks. From micro-indentation measurements, we found that a low-temperature annealing (T < 0.4 Tm) hardens nanocrystalline Ni, leading to an inverse Hall–Petch relationship. We explain this abnormal Hall–Petch effect in terms of impurity segregation to the grain boundaries of the nanocrystalline Ni
    corecore