39 research outputs found

    Zn-Neighbor Cu NQR in Zn-Substituted YBa2Cu3O7-d and YBa2Cu4O8

    Full text link
    We studied local electronic states near Zn in optimally doped YBa2_2(Cu1−x_{1-x}Zn_x)3_3O7−δ_{7-\delta} and underdoped YBa2_2(Cu1−x_{1-x}Zn_x)4_4O8_8 via satellite signals of plane-site Cu(2) nuclear quadrupole resonance (NQR) spectra. From the relative intensity of Cu NQR spectra, the satellite signals are assigned to Zn-neighbor Cu NQR lines. The Cu nuclear spin-lattice relaxation time of the satellite signal is shorter than that of the main signal, which indicates that the magnetic correlation is locally enhanced near Zn both for the underdoped and the optimally doped systems. The pure YBa2_2Cu4_4O8_8 is a stoichiometric, homogenous, underdoped electronic system; nevertheless, the Zn-induced inhomogeneous magnetic response in the CuO2_2 plane is more marked than that of the optimally doped YBa2_2Cu3_3O7−δ_{7-\delta}.Comment: 9 pages including 8 figures, to be published in Phys. Rev.

    Multiscale Representations for Fast Pattern Matching in Stream Time Series

    No full text

    Impacts of warm equal-channel angular pressing on microstructure and mechanical properties of granular pearlitic steel

    No full text
    Abstract Equal-channel angular pressing (ECAP) of granular pearlite high-carbon steel at 650 °C via the Bc route is thoroughly investigated. Together with microstructural evolution investigated through scanning and transmission electron microscopies, microtensile and microhardness testing are conducted for their mechanical properties. After four passes of warm deformation, the formed ultra-microduplex structure is found to contain both ferrite grains of size ≈0.45 μm and cementite particles with the diameter of ≈0.3 μm. The corresponding microhardness and tensile strength are observed to increase first, followed by a decrement with the number of deformations passes. Meanwhile, yield strength and yield ratio increase with the ECAP passes, along with a slight decrease in elongation. The fracture morphology also changes from many deep dimples before ECAP to many small dimples after ECAP application, denoting a typical ductile fracture of the pearlitic steel
    corecore