10 research outputs found

    Development of an all-nitride magnetic tunnel junction

    No full text
    We are developing an all-nitride magnetic tunnel junction. Here, we report on the growth and properties of gamma'-Fe4N, alpha"-Fe16N2 and Cu3N. Epitaxial gamma'-Fe4N films were grown by molecular beam epitaxy of iron in the presence of atomic nitrogen from an RF atomic source. Layers of Cu3N were grown in a similar fashion. The alpha"-Fe16N2 phase was synthesized by nitriding epitaxial iron layers. Up to now, Cu3N and alpha"-Fe16N2 were not obtained as pure phases. (C) 2002 Elsevier Science B.V. All rights reserved

    Enhanced wake mixing in wind farms using the Helix approach: A loads sensitivity study

    No full text
    The Helix approach is a control technology that reduces the wake effect in wind farms by accelerating wake mixing through individual pitch control, resulting in significant AEP gain. However, this study found that depending on its settings, the controller may increase pitch bearing damage and loads on some turbine components. Using a modified version of NREL’s Reference OpenSource Controller in OpenFAST, this study analysed the sensitivity of loads and pitch bearing damage to different Helix controller settings on the IEA-15MW reference offshore wind turbine. Results showed that loads increased with the excitation signal amplitude but were less affected by its frequency. Additionally, more pitch bearing damage was observed in the counterclockwise Helix direction, while slightly higher loads were observed in the clockwise direction when using the same excitation signal amplitude and frequency for both directions.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Team Jan-Willem van Wingerde

    Quantitative Guidelines for Force Calibration through Spectral Analysis of Magnetic Tweezers Data

    Get PDF
    Single-molecule techniques are powerful tools that can be used to study the kinetics and mechanics of a variety of enzymes and their complexes. Force spectroscopy, for example, can be used to control the force applied to a single molecule and thereby facilitate the investigation of real-time nucleic acid-protein interactions. In magnetic tweezers, which offer straightforward control and compatibility with fluorescence measurements or parallel tracking modes, force-measurement typically relies on the analysis of positional fluctuations through video microscopy. Significant errors in force estimates, however, may arise from incorrect spectral analysis of the Brownian motion in the magnetic tweezers. Here we investigated physical and analytical optimization procedures that can be used to improve the range over which forces can be reliably measured. To systematically probe the limitations of magnetic tweezers spectral analysis, we have developed a magnetic tweezers simulator, whose outcome was validated with experimental data. Using this simulator, we evaluate methods to correctly perform force experiments and provide guidelines for correct force calibration under configurations that can be encountered in typical magnetic tweezers experiments

    Pan-cancer analysis of whole genomes

    No full text
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation; analyses timings and patterns of tumour evolution; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity; and evaluates a range of more-specialized features of cancer genomes
    corecore