37 research outputs found

    Phenomenology of the Lense-Thirring effect in the Solar System

    Full text link
    Recent years have seen increasing efforts to directly measure some aspects of the general relativistic gravitomagnetic interaction in several astronomical scenarios in the solar system. After briefly overviewing the concept of gravitomagnetism from a theoretical point of view, we review the performed or proposed attempts to detect the Lense-Thirring effect affecting the orbital motions of natural and artificial bodies in the gravitational fields of the Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of the impact of several sources of systematic uncertainties of dynamical origin to realistically elucidate the present and future perspectives in directly measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in Astrophysics and Space Science (ApSS). Some uncited references in the text now correctly quoted. One reference added. A footnote adde

    Psychology and aggression

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68264/2/10.1177_002200275900300301.pd

    Avanços nas pesquisas etnobotùnicas no Brasil

    Full text link

    Re: praise for recent address.--Correspondence

    No full text
    Re: praise for recent address

    Opportunities for Multimessenger Astronomy in the 2020s

    No full text
    Electromagnetic observations of the sky have been the basis for our study of the Universe for millennia, cosmic ray studies are now entering their second century, the first neutrinos from an astrophysical source were identified three decades ago, and gravitational waves were directly detected only four years ago. Detections of these messengers are now common. Astrophysics will undergo a revolution in the 2020s as multimessenger detections become routine. The 8th Astro2020 Thematic Area is Multimessenger Astronomy and Astrophysics, which includes the identification of the sources of gravitational waves, astrophysical and cosmogenic neutrinos, cosmic rays, and gamma-rays, and the coordinated multimessenger and multiwavelength follow-ups. Identifying and characterizing multimessenger sources enables science throughout and beyond astrophysics. Success in the multimessenger era requires: (i) sensitive coverage of the non-electromagnetic messengers, (ii) full coverage of the electromagnetic spectrum, with either fast-response observations or broad and deep high-cadence surveys, and (iii) improved collaboration, communication, and notification platforms
    corecore