558 research outputs found

    Pinning of stripes by local structural distortions in cuprate high-Tc superconductors

    Full text link
    We study the spin-density wave (stripe) instability in lattices with mixed low-temperature orthorhombic (LTO) and low-temperature tetragonal (LTT) crystal symmetry. Within an explicit mean-field model it is shown how local LTT regions act as pinning centers for static stripe formation. We calculate the modulations in the local density of states near these local stripe regions and find that mainly the coherence peaks and the van Hove singularity (VHS) are spatially modulated. Lastly, we use the real-space approach to simulate recent tunneling data in the overdoped regime where the VHS has been detected by utilizing local normal state regions.Comment: Conference proceedings for Stripes1

    Comment on "Mean First Passage Time for Anomalous Diffusion"

    Full text link
    We correct a previously erroneous calculation [Phys. Rev. E 62, 6065 (2000)] of the mean first passage time of a subdiffusive process to reach either end of a finite interval in one dimension. The mean first passage time is in fact infinite.Comment: To appear in Phys. Rev.

    The social gradient in stress and depressive symptoms among adolescent girls: A systematic review and narrative synthesis

    Get PDF
    Aim: Socioeconomic inequality is found to negatively influence mental health, but studies investigating the relationship between socioeconomic status (SES) and specific common mental health problems such as stress and depressive symptoms in the general adolescent population are needed. Moreover, gender gaps in mental health among adolescents are evident, but there is a lack of studies that investigate socioeconomic differences in mental health within genders. As girls report consistently more depressive symptoms than do boys, this systematic review specifically investigates whether socioeconomic status is associated with stress and depressive symptoms among adolescent girls in the general population. Methods: Eligible studies according to predefined inclusion criteria were identified from Medline, PsycINFO, ISI Web of Science, Svemed+ and Idunn. Eight studies were identified, whereby only two measured stress; hence, the evidence base for stress was too limited to perform an analysis. A narrative synthesis was conducted of the six studies that measured depressive symptoms. Results: A significant inverse social gradient in depressive symptoms among adolescent girls was revealed in all studies that applied parental employment status and perceived financial difficulties as SES measures, while parental educational level and Family Affluence Scale (FAS) gave inconsistent results. The relatively low number of studies may limit interpretation. Conclusions: Depressive symptoms were more common among adolescent girls with low SES compared to girls with higher SES. SES measures should be applied with care in studies of populations of adolescent girls, as the results can vary based on the chosen indicator. Actions to reduce depressive symptoms among adolescent girls in the general population should include targeting socioeconomic inequalities

    First- principle calculations of magnetic interactions in correlated systems

    Full text link
    We present a novel approach to calculate the effective exchange interaction parameters based on the realistic electronic structure of correlated magnetic crystals in local approach with the frequency dependent self energy. The analog of ``local force theorem'' in the density functional theory is proven for highly correlated systems. The expressions for effective exchange parameters, Dzialoshinskii- Moriya interaction, and magnetic anisotropy are derived. The first-principle calculations of magnetic excitation spectrum for ferromagnetic iron, with the local correlation effects from the numerically exact QMC-scheme is presented.Comment: 17 pages, 3 Postscript figure

    Magnetic ordering in electronically phase-separated La2-xSrxCuO4+y: Neutron diffraction experiments

    Get PDF
    We present results of magnetic neutron diffraction experiments on the codoped superoxygenated La2-xSrxCuO4+y (LSCO+O) system with x=0.09. We find that the magnetic phase is long-range ordered incommensurate antiferromagnetic with a Neacuteel temperature T-N coinciding with the superconducting ordering temperature T-c=40 K. The incommensurability value is consistent with a hole doping of n(h)approximate to 1>8 but in contrast to nonsuperoxygenated La2-xSrxCuO4 with hole doping close to n(h)approximate to 18 the magnetic-order parameter is not field dependent. We attribute this to the magnetic order being fully developed in LSCO+O as in the spin and charge ordered "stripe" compounds La1.48Nd0.40Sr0.12CuO4 and La7/8Ba1/8CuO4

    Effective Actions and Phase Fluctuations in d-wave Superconductors

    Get PDF
    We study effective actions for order parameter fluctuations at low temperature in layered d-wave superconductors such as the cuprates. The order parameter lives on the bonds of a square lattice and has two amplitude and two phase modes associated with it. The low frequency spectral weights for amplitude and relative phase fluctuations is determined and found to be subdominant to quasiparticle contributions. The Goldstone phase mode and its coupling to density fluctuations in charged systems is treated in a gauge-invariant manner. The Gaussian phase action is used to study both the cc-axis Josephson plasmon and the more conventional in-plane plasmon in the cuprates. We go beyond the Gaussian theory by deriving a coarse-grained quantum XY model, which incorporates important cutoff effects overlooked in previous studies. A variational analysis of this effective model shows that in the cuprates, quantum effects of phase fluctuations are important in reducing the zero temperature superfluid stiffness, but thermal effects are small for T<<TcT << T_c.Comment: Some numerical estimates corrected and figures changed. to appear in PRB, Sept.1 (2000

    Extreme Electron-Phonon Coupling in Boron-based Layered Superconductors

    Full text link
    The phonon-mode decomposition of the electron-phonon coupling in the MgB2-like system Li_{1-x}BC is explored using first principles calculations. It is found that the high temperature superconductivity of such systems results from extremely strong coupling to only ~2% of the phonon modes. Novel characteristics of E_2g branches include (1) ``mode lambda'' values of 25 and greater compared to a mean of 0.4\sim 0.4 for other modes, (2) a precipitous Kohn anomaly, and (3) E_2g phonon linewidths within a factor of ~2 of the frequency itself, indicating impending breakdown of linear electron-phonon theory. This behavior in borne out by recent inelastic x-ray scattering studies of MgB2 by Shukla et al.Comment: 4 two-column pages, 4 figures. Equations simplified. Figure 4 changed. Comparison with new data include

    Modeling the actinides with disordered local moments

    Full text link
    A first-principles disordered local moment (DLM) picture within the local-spin-density and coherent potential approximations (LSDA+CPA) of the actinides is presented. The parameter free theory gives an accurate description of bond lengths and bulk modulus. The case of δ\delta-Pu is studied in particular and the calculated density of states is compared to data from photo-electron spectroscopy. The relation between the DLM description, the dynamical mean field approach and spin-polarized magnetically ordered modeling is discussed.Comment: 6 pages, 4 figure

    Generalized pricing formulas for stochastic volatility jump diffusion models applied to the exponential Vasicek model

    Full text link
    Path integral techniques for the pricing of financial options are mostly based on models that can be recast in terms of a Fokker-Planck differential equation and that, consequently, neglect jumps and only describe drift and diffusion. We present a method to adapt formulas for both the path-integral propagators and the option prices themselves, so that jump processes are taken into account in conjunction with the usual drift and diffusion terms. In particular, we focus on stochastic volatility models, such as the exponential Vasicek model, and extend the pricing formulas and propagator of this model to incorporate jump diffusion with a given jump size distribution. This model is of importance to include non-Gaussian fluctuations beyond the Black-Scholes model, and moreover yields a lognormal distribution of the volatilities, in agreement with results from superstatistical analysis. The results obtained in the present formalism are checked with Monte Carlo simulations.Comment: 9 pages, 2 figures, 1 tabl
    corecore