46 research outputs found

    Helicity Analysis of Semileptonic Hyperon Decays Including Lepton Mass Effects

    Full text link
    Using the helicity method we derive complete formulas for the joint angular decay distributions occurring in semileptonic hyperon decays including lepton mass and polarization effects. Compared to the traditional covariant calculation the helicity method allows one to organize the calculation of the angular decay distributions in a very compact and efficient way. In the helicity method the angular analysis is of cascade type, i.e. each decay in the decay chain is analyzed in the respective rest system of that particle. Such an approach is ideally suited as input for a Monte Carlo event generation program. As a specific example we take the decay Ξ0Σ++l+νˉl\Xi^0 \to \Sigma^+ + l^- + \bar{\nu}_l (l=e,μl^-=e^-, \mu^-) followed by the nonleptonic decay Σ+p+π0\Sigma^+ \to p + \pi^0 for which we show a few examples of decay distributions which are generated from a Monte Carlo program based on the formulas presented in this paper. All the results of this paper are also applicable to the semileptonic and nonleptonic decays of ground state charm and bottom baryons, and to the decays of the top quark.Comment: Published version. 40 pages, 11 figures included in the text. Typos corrected, comments added, references added and update

    Measurement of the branching fraction for Υ(1S)τ+τ\Upsilon (1S) \to \tau^+ \tau^-

    Full text link
    We have studied the leptonic decay of the Υ(1S)\Upsilon (1S) resonance into tau pairs using the CLEO II detector. A clean sample of tau pair events is identified via events containing two charged particles where exactly one of the particles is an identified electron. We find B(Υ(1S)τ+τ)=(2.61 ± 0.12 +0.090.13)B(\Upsilon(1S) \to \tau^+ \tau^-) = (2.61~\pm~0.12~{+0.09\atop{-0.13}})%. The result is consistent with expectations from lepton universality.Comment: 9 pages, RevTeX, two Postscript figures available upon request, CLNS 94/1297, CLEO 94-20 (submitted to Physics Letters B

    Observation of a Narrow Resonance of Mass 2.46 GeV/c^2 Decaying to D_s^*+ pi^0 and Confirmation of the D_sJ^* (2317) State

    Full text link
    Using 13.5 inverse fb of e+e- annihilation data collected with the CLEO II detector we have observed a narrow resonance in the Ds*+pi0 final state, with a mass near 2.46 GeV. The search for such a state was motivated by the recent discovery by the BaBar Collaboration of a narrow state at 2.32 GeV, the DsJ*(2317)+ that decays to Ds+pi0. Reconstructing the Ds+pi0 and Ds*+pi0 final states in CLEO data, we observe peaks in both of the corresponding reconstructed mass difference distributions, dM(Dspi0)=M(Dspi0)-M(Ds) and dM(Ds*pi0)=M(Ds*pi0)-M(Ds*), both of them at values near 350 MeV. We interpret these peaks as signatures of two distinct states, the DsJ*(2317)+ plus a new state, designated as the DsJ(2463)+. Because of the similar dM values, each of these states represents a source of background for the other if photons are lost, ignored or added. A quantitative accounting of these reflections confirms that both states exist. We have measured the mean mass differences = 350.0 +/- 1.2 [stat] +/- 1.0 [syst] MeV for the DsJ*(2317) state, and = 351.2 +/- 1.7 [stat] +/- 1.0 [syst] MeV for the new DsJ(2463)+ state. We have also searched, but find no evidence, for decays of the two states via the channels Ds*+gamma, Ds+gamma, and Ds+pi+pi-. The observations of the two states at 2.32 and 2.46 GeV, in the Ds+pi0 and Ds*+pi0 decay channels respectively, are consistent with their interpretations as (c anti-strange) mesons with orbital angular momentum L=1, and spin-parities of 0+ and 1+.Comment: 16 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, version to be published in Physical Review D; minor modifications and fixes to typographical errors, plus an added section on production properties. The main results are unchanged; they supersede those reported in hep-ex/030501

    Measurement of the Charge Asymmetry in BK(892)±πB\to K^* (892)^{\pm}\pi^{\mp}

    Full text link
    We report on a search for a CP-violating asymmetry in the charmless hadronic decay B -> K*(892)+- pi-+, using 9.12 fb^-1 of integrated luminosity produced at \sqrt{s}=10.58 GeV and collected with the CLEO detector. We find A_{CP}(B -> K*(892)+- pi-+) = 0.26+0.33-0.34(stat.)+0.10-0.08(syst.), giving an allowed interval of [-0.31,0.78] at the 90% confidence level.Comment: 7 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PR

    Study of the q^2-Dependence of B --> pi ell nu and B --> rho(omega)ell nu Decay and Extraction of |V_ub|

    Full text link
    We report on determinations of |Vub| resulting from studies of the branching fraction and q^2 distributions in exclusive semileptonic B decays that proceed via the b->u transition. Our data set consists of the 9.7x10^6 BBbar meson pairs collected at the Y(4S) resonance with the CLEO II detector. We measure B(B0 -> pi- l+ nu) = (1.33 +- 0.18 +- 0.11 +- 0.01 +- 0.07)x10^{-4} and B(B0 -> rho- l+ nu) = (2.17 +- 0.34 +0.47/-0.54 +- 0.41 +- 0.01)x10^{-4}, where the errors are statistical, experimental systematic, systematic due to residual form-factor uncertainties in the signal, and systematic due to residual form-factor uncertainties in the cross-feed modes, respectively. We also find B(B+ -> eta l+ nu) = (0.84 +- 0.31 +- 0.16 +- 0.09)x10^{-4}, consistent with what is expected from the B -> pi l nu mode and quark model symmetries. We extract |Vub| using Light-Cone Sum Rules (LCSR) for 0<= q^2<16 GeV^2 and Lattice QCD (LQCD) for 16 GeV^2 <= q^2 < q^2_max. Combining both intervals yields |Vub| = (3.24 +- 0.22 +- 0.13 +0.55/-0.39 +- 0.09)x10^{-3}$ for pi l nu, and |Vub| = (3.00 +- 0.21 +0.29/-0.35 +0.49/-0.38 +-0.28)x10^{-3} for rho l nu, where the errors are statistical, experimental systematic, theoretical, and signal form-factor shape, respectively. Our combined value from both decay modes is |Vub| = (3.17 +- 0.17 +0.16/-0.17 +0.53/-0.39 +-0.03)x10^{-3}.Comment: 45 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PR

    Study of the B^0 Semileptonic Decay Spectrum at the Upsilon(4S) Resonance

    Full text link
    We have made a first measurement of the lepton momentum spectrum in a sample of events enriched in neutral B's through a partial reconstruction of B0 --> D*- l+ nu. This spectrum, measured with 2.38 fb**-1 of data collected at the Upsilon(4S) resonance by the CLEO II detector, is compared directly to the inclusive lepton spectrum from all Upsilon(4S) events in the same data set. These two spectra are consistent with having the same shape above 1.5 GeV/c. From the two spectra and two other CLEO measurements, we obtain the B0 and B+ semileptonic branching fractions, b0 and b+, their ratio, and the production ratio f+-/f00 of B+ and B0 pairs at the Upsilon(4S). We report b+/b0=0.950 (+0.117-0.080) +- 0.091, b0 = (10.78 +- 0.60 +- 0.69)%, and b+ = (10.25 +- 0.57 +- 0.65)%. b+/b0 is equivalent to the ratio of charged to neutral B lifetimes, tau+/tau0.Comment: 14 page, postscript file also available at http://w4.lns.cornell.edu/public/CLN

    Measurement of the Decay Asymmetry Parameters in Λc+Λπ+\Lambda_c^+ \to \Lambda\pi^+ and Λc+Σ+π0\Lambda_c^+ \to \Sigma^+\pi^0

    Full text link
    We have measured the weak decay asymmetry parameters (\aLC ) for two \LC\ decay modes. Our measurements are \aLC = -0.94^{+0.21+0.12}_{-0.06-0.06} for the decay mode Λc+Λπ+\Lambda_c^+ \to \Lambda\pi^+ and \aLC = -0.45\pm 0.31 \pm 0.06 for the decay mode ΛcΣ+π0\Lambda_c \to \Sigma^+\pi^0 . By combining these measurements with the previously measured decay rates, we have extracted the parity-violating and parity-conserving amplitudes. These amplitudes are used to test models of nonleptonic charmed baryon decay.Comment: 11 pages including the figures. Uses REVTEX and psfig macros. Figures as uuencoded postscript. Also available as http://w4.lns.cornell.edu/public/CLNS/1995/CLNS95-1319.p

    Observation of the Ξc+\Xi_c^+ Charmed Baryon Decays to Σ+Kπ+\Sigma^+ K^-\pi^+, Σ+Kˉ0\Sigma^+ \bar{K}^{*0}, and ΛKπ+π+\Lambda K^-\pi^+\pi^+

    Full text link
    We have observed two new decay modes of the charmed baryon Ξc+\Xi_c^+ into Σ+Kπ+\Sigma^+ K^-\pi^+ and Σ+Kˉ0\Sigma^+ \bar{K}^{*0} using data collected with the CLEO II detector. We also present the first measurement of the branching fraction for the previously observed decay mode Ξc+ΛKπ+π+\Xi_c^+\to\Lambda K^-\pi^+\pi^+. The branching fractions for these three modes relative to Ξc+Ξπ+π+\Xi_c^+\to\Xi^-\pi^+\pi^+ are measured to be 1.18±0.26±0.171.18 \pm 0.26 \pm 0.17, 0.92±0.27±0.140.92 \pm 0.27 \pm 0.14, and 0.58±0.16±0.070.58 \pm 0.16 \pm 0.07, respectively.Comment: 12 page uuencoded postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Search for CP Violation in D^0--> K_S^0 pi^+pi^-

    Full text link
    We report on a search for CP violation in the decay of D0 and D0B to Kshort pi+pi-. The data come from an integrated luminosity of 9.0 1/fb of e+e- collisions at sqrt(s) ~ 10 GeV recorded with the CLEO II.V detector. The resonance substructure of this decay is well described by ten quasi-two-body decay channels (K*-pi+, K*0(1430)-pi+, K*2(1430)-pi+, K*(1680)-pi+, Kshort rho, Kshort omega, Kshort f0(980), Kshort f2(1270), Kshort f0(1370), and the ``wrong sign'' K*+ pi-) plus a small non-resonant component. We observe no evidence for CP violation in the amplitudes and phases that describe the decay D0 to K_S^0 pi+pi-.Comment: 10 pages, 3 figures, also available at http://w4.lns.cornell.edu/public/CLNS/, submitted to PR

    Measurement of Lepton Momentum Moments in the Decay bar{B} \to X \ell \bar{\nu} and Determination of Heavy Quark Expansion Parameters and |V_cb|

    Full text link
    We measure the primary lepton momentum spectrum in B-bar to X l nu decays, for p_l > 1.5 GeV/c in the B rest frame. From this, we calculate various moments of the spectrum. In particular, we find R_0 = [int(E_l>1.7) (dGam/dE_sl)*dE_l] / [int(E_l>1.5) (dGam/dE_sl)*dE_l] = 0.6187 +/- 0.0014_stat +/- 0.0016_sys and R_1 = [int(E_l>1.5) E_l(dGam/dE_sl)*dE_l] / [int(E_l>1.5) (dGam/dE_sl)*dE_l] = (1.7810 +/- 0.0007_stat +/- 0.0009_sys) GeV. We use these moments to determine non-perturbative parameters governing the semileptonic width. In particular, we extract the Heavy Quark Expansion parameters Lambda-bar = (0.39 +/- 0.03_stat +/- 0.06_sys +/- 0.12_th) GeV and lambda_1 = (-0.25 +/- 0.02_stat +/- 0.05_sys +/- 0.14_th) GeV^2. The theoretical constraints used are evaluated through order 1/M_B^3 in the non-perturbative expansion and beta_0*alpha__s^2 in the perturbative expansion. We use these parameters to extract |V_cb| from the world average of the semileptonic width and find |V_cb| = (40.8 +/- 0.5_Gam-sl +/- 0.4_(lambda_1,Lambda-bar)-exp +/- 0.9_th) x 10^-3. In addition, we extract the short range b-quark mass m_b^1S = (4.82 +/- 0.07_exp +/- 0.11_th) GeV/c^2. Finally, we discuss the implications of our measurements for the theoretical understanding of inclusive semileptonic processes.Comment: 21 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PR
    corecore