8 research outputs found

    Model-checking discrete duration calculus

    No full text

    Modeling and Verification of a Fault-Tolerant Real-time Startup Protocol using Calendar Automata

    No full text
    We discuss the modeling and verification of real-time systems using the SAL model checker. A new modeling framework based on event calendars enables dense timed systems to be described without relying on continuously varying clocks. We present verification techniques that rely on induction and abstraction, and show how these techniques are e#ciently supported by the SAL symbolic model-checking tools. The modeling and verification method is applied to the fault-tolerant real-time startup protocol used in the Timed Triggered Architecture

    Slicing Object-Z Specifications for Verification

    No full text
    Abstract. Slicing is the activity of reducing a program or a specification with respect to a given condition (the slicing criterion) such that the condition holds on the full program if and only if it holds on the reduced program. Originating from program analysis the entity to be sliced is usually a program and the slicing criterion a value of a variable at a certain program point. In this paper we present an approach to slicing Object-Z specifications with temporal logic formulae as slicing criteria and show the correctness of our approach. The underlying motivation is the goal to substantially reduce the size of the specification and subsequently facilitate verification of temporal logic properties.

    Model-Checking of Specifications Integrating Processes, Data and Time

    No full text
    We present a new model-checking technique for CSP-OZ-DC, a combination of CSP, Object-Z and Duration Calculus, that allows reasoning about systems exhibiting communication, data and real-time aspects. As intermediate layer we will use a new kind of timed automata that preserve events and data variables of the specification. These automata have a simple operational semantics that is amenable to verification by a constraint-based abstraction-refinement model checker. By means of a case study, a simple elevator parameterised by the number of floors, we show that this approach admits model-checking parameterised and infinite state real-time systems
    corecore