35 research outputs found

    On the complexity of string folding

    Full text link

    Micro-computed tomographic analysis of the radial geometry of intrarenal artery-vein pairs in rats and rabbits: Comparison with light microscopy

    Get PDF
    We assessed the utility of synchrotron-radiation micro-computed tomography (micro-CT) for quantification of the radial geometry of the renal cortical vasculature. The kidneys of nine rats and six rabbits were perfusion fixed and the renal circulation filled with Microfil. In order to assess shrinkage of Microfil, rat kidneys were imaged at the Australian Synchrotron immediately upon tissue preparation and then post fixed in paraformaldehyde and reimaged 24 hours later. The Microfil shrank only 2-5% over the 24 hour period. All subsequent micro-CT imaging was completed within 24 hours of sample preparation. After micro-CT imaging, the kidneys were processed for histological analysis. In both rat and rabbit kidneys, vascular structures identified in histological sections could be identified in two-dimensional (2D) micro-CT images from the original kidney. Vascular morphology was similar in the two sets of images. Radial geometry quantified by manual analysis of 2D images from micro-CT was consistent with corresponding data generated by light microscopy. However, due to limited spatial resolution when imaging a whole organ using contrast-enhanced micro-CT, only arteries ≄100 and ≄60 ÎŒm in diameter, for the rat and rabbit respectively, could be assessed. We conclude that it is feasible and valid to use micro-CT to quantify vascular geometry of the renal cortical circulation in both the rat and rabbit. However, a combination of light microscopic and micro-CT approaches are required to evaluate the spatial relationships between intrarenal arteries and veins over an extensive range of vessel size

    Traditional and transgenic strategies for controlling tomato-infecting begomoviruses

    Full text link

    Spectral shapes of rovibrational lines of CO broadened by He, Ar, Kr and SF <sub>6</sub> : A test case of the Hartmann-Tran profile

    No full text
    International audienceHigh signal-to-noise ratio spectra of the (3-0) band P(1) and P(17) lines of CO broadened by He, Ar, Kr and SF6 were measured with a frequency-stabilized cavity ring-down spectroscopy system. For each collision-partner and both lines, multiple spectra were measured over pressures spanning nearly three decades up to 130 kPa. These data were analyzed with a multispectrum fitting procedure. Line shapes were modeled using the Hartmann-Tran (HT) profile with first-order line mixing as well as several other simplified profiles. The results show that for all considered collision partners (with the exception of SF6), the HT profile captures the measured line shapes with maximum absolute residuals that are within 0.1% of the peak absorption. In the case of SF6, which is the heaviest perturber investigated here, the maximum residuals for the HT profile are twice as large as for the other collision partners

    Three-dimensional morphometric analysis of the renal vasculature

    No full text
    Vascular topology and morphology are critical in the regulation of blood flow and the transport of small solutes, including oxygen, carbon dioxide, nitric oxide, and hydrogen sulfide. Renal vascular morphology is particularly challenging, since many arterial walls are partially wrapped by the walls of veins. In the absence of a precise characterization of three-dimensional branching vascular geometry, accurate computational modeling of the intrarenal transport of small diffusible molecules is impossible. An enormous manual effort was required to achieve a relatively precise characterization of rat renal vascular geometry, highlighting the need for an automated method for analysis of branched vasculature morphology to allow characterization of the renal vascular geometry of other species, including humans. We present a semisupervised method for three-dimensional morphometric analysis of renal vasculature images generated by computed tomography. We derive quantitative vascular attributes important to mass transport between arteries, veins, and the renal tissue and present methods for their computation for a three-dimensional vascular geometry. To validate the algorithm, we compare automated vascular estimates with subjective manual measurements for a portion of rabbit kidney. Although increased image resolution can improve outcomes, our results demonstrate that the method can quantify the morphological characteristics of artery-vein pairs, comparing favorably with manual measurements. Similar to the rat, we show that rabbit artery-vein pairs become less intimate along the course of the renal vasculature, but the total wrapped mass transfer coefficient increases and then decreases. This new method will facilitate new quantitative physiological models describing the transport of small molecules within the kidney

    Diffusive shunting of gases and other molecules in the renal vasculature: Physiological and evolutionary significance

    No full text
    Countercurrent systems have evolved in a variety of biological systems that allow transfer of heat, gases and solutes. For example, in the renal medulla, the countercurrent arrangement of vascular and tubular elements facilitates the trapping of urea and other solutes in the inner medulla, which in turn enables the formation of concentrated urine. Arteries and veins in the cortex are also arranged in a countercurrent fashion, as are descending and ascending vasa recta in the medulla. For countercurrent diffusion to occur, barriers to diffusion must be small. This appears to be characteristic of larger vessels in the renal cortex. There must also be gradients in the concentration of molecules between afferent and efferent vessels, with the transport of molecules possible in either direction. Such gradients exist for oxygen in both the cortex and medulla, but there is little evidence that large gradients exist for other molecules such as carbon dioxide, nitric oxide, superoxide, hydrogen sulfide, and ammonia. There is some experimental evidence for arterial-to-venous (AV) oxygen shunting. Mathematical models also provide evidence for oxygen shunting in both the cortex and medulla. However, the quantitative significance of AV oxygen shunting remains a matter of controversy. Thus, while the countercurrent arrangement of vasa recta in the medulla appears to have evolved as a consequence of the evolution of Henle's loop, the evolutionary significance of the intimate countercurrent arrangement of blood vessels in the renal cortex remains an enigma

    Vascular geometry and oxygen diffusion in the vicinity of artery-vein pairs in the kidney

    No full text
    Renal arterial-to-venous (AV) oxygen shunting limits oxygen delivery to renal tissue. To better understand how oxygen in arterial blood can bypass renal tissue, we quantified the radial geometry of AV pairs and how it differs according to arterial diameter and anatomic location. We then estimated diffusion of oxygen in the vicinity of arteries of typical geometry using a computational model. The kidneys of six rats were perfusion fixed, and the vasculature was filled with silicone rubber (Microfil). A single section was chosen from each kidney, and all arteries (n = 1,628) were identified. Intrarenal arteries were largely divisible into two "types," characterized by the presence or absence of a close physical relationship with a paired vein. Arteries with a close physical relationship with a paired vein were more likely to have a larger rather than smaller diameter, and more likely to be in the inner-cortex than the mid- or outer cortex. Computational simulations indicated that direct diffusion of oxygen from an artery to a paired vein can only occur when the two vessels have a close physical relationship. However, even in the absence of this close relationship oxygen can diffuse from an artery to periarteriolar capillaries and venules. Thus AV oxygen shunting in the proximal preglomerular circulation is dominated by direct diffusion of oxygen to a paired vein. In the distal preglomerular circulation, it may be sustained by diffusion of oxygen from arteries to capillaries and venules close to the artery wall, which is subsequently transported to renal veins by convection

    A quantitative analysis of the factors influencing oxygen diffusion in the vicinity of artery-vein pairs in the kidney

    No full text
    Background: Diffusion of oxygen from arteries to veins in the kidney (AV oxygen shunting) acts to limit oxygen delivery to renal tissue. We recently employed computational modeling to identify two factors critical to determination of the quantity of AV oxygen shunting within the renal circulation. These were (i) the distance between the artery and the vein, and (ii) the degree to which the vein wraps around the wall of the artery. Aim: To quantify how the factors in (i) and (ii) above change along the course of the renal circulation. Methods: The renal vasculature of Sprague Dawley rats (n=6) was perfusion fixed and filled with MicrofilÂź. A section from each kidney was chosen and the shortest arterial/arteriolar diameter, distance to the nearest vein, and the degree to which a vein wraps an artery were measured. Results: The diffusion distance between arteries and veins increased with decreasing arte-rial diameter (Figure 1). The proportion of the arterial wall surrounded by the vein (wrapping) decreased as arterial diameter decreased (Figure 2). Conclusions: The spatial relationships (separation and wrapping) between arteries and veins that promote AV oxygen shunting are more prominent in the larger vessels than the smaller vessels of the kidney. These observations challenge the conventional notion that most AV oxygen shunting occurs in the smaller cortical vessels (e.g., interlobular arteries) after the divergence of the cortical and medullary circulations. Thus, AV oxygen shunting may limit oxygen delivery to the renal medulla as well as the renal cortex
    corecore