10 research outputs found
A Novel Conserved RNA-binding Domain Protein, RBD-1, Is Essential For Ribosome Biogenesis
Synthesis of the ribosomal subunits from pre-rRNA requires a large number of trans-acting proteins and small nucleolar ribonucleoprotein particles to execute base modifications, RNA cleavages, and structural rearrangements. We have characterized a novel protein, RNA-binding domain-1 (RBD-1), that is involved in ribosome biogenesis. This protein contains six consensus RNA-binding domains and is conserved as to sequence, domain organization, and cellular location from yeast to human. RBD-1 is essential in Caenorhabditis elegans. In the dipteran Chironomus tentans, RBD-1 (Ct-RBD-1) binds pre-rRNA in vitro and anti-Ct-RBD-1 antibodies repress pre-rRNA processing in vivo. Ct-RBD-1 is mainly located in the nucleolus in an RNA polymerase I transcription-dependent manner, but it is also present in discrete foci in the interchromatin and in the cytoplasm. In cytoplasmic extracts, 20–30% of Ct-RBD-1 is associated with ribosomes and, preferentially, with the 40S ribosomal subunit. Our data suggest that RBD-1 plays a role in structurally coordinating pre-rRNA during ribosome biogenesis and that this function is conserved in all eukaryotes
Development of predator defences in fishes
A variety of development characteristics, morphological, behavioural, and experiential, contribute to the extreme vulnerability of young fishes to predation. The influence of these characteristics is complicated by the fact that the larval period is one of substantial and rapid change. Yet survival is the ultimate goal;-it is only by reaching maturity that individual fish have the opportunity to reproduce. With such high stakes it is not surprising that predator defences are of major importance during all phases of life. Developmental constraints may limit the defensive options for young fishes. Avoidance behaviours, which reduce the likelihood of encountering a predator or of being attacked by it, are particulaly evident in the youngest stages. Here size, coloration and dispersal are used to help elude the predator's attention. As fishes grow and acquire greater morphological and behavioural sophistication, there is more scope for predator evasion when avoidance fails. Older fishes are increasingly able to respond to external stimuli and can detect and react to predators or join conspecifics in common defence (schooling). Behavioural development is not simply a consequence of growth and the concomitant physical alterations of the body; it is also mediated by experience that comes through interaction with the physical and biotic environment. Predispositions to respond to experience may be a product of evolutionary history. Although mortality rates decline markedly with development and maturity, changes in size or behaviour can render fishes vulnerable to new suites of predators. Effective predator avoidance can compromise other activities, such as foraging, and individuals may be forced to reconcile conflicting demands. Developmental niche shifts that occur, for example, when certain size classes take refuge in less profitable feeding habitats, represent one such trade-off. Niche shifts may also be mediated by the influence of the programme for morphological development on sensory or behavioural capabilities. In addition to all of these developmental consderations, natural variations in environmental conditions - such as temperature, photoperiod, predator density and variety, and presence of alternative prey - represent additional challenges to predator defences during the rite of passage from birth to reproduction.</p