25 research outputs found

    Comparative Pharmacokinetics of Tixagevimab/Cilgavimab (AZD7442) Administered Intravenously Versus Intramuscularly in Symptomatic SARS-CoV-2 Infection

    Get PDF
    AZD7442 (Evusheld) is a combination of two human anti-severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) monoclonal antibodies (mAbs), tixagevimab (AZD8895) and cilgavimab (AZD1061). Route of administration is an important consideration to improve treatment access. We assessed pharmacokinetics (PKs) of AZD7442 absorption following 600 mg administered intramuscularly (i.m.) in the thigh compared with 300 mg intravenously (i.v.) in ambulatory adults with symptomatic COVID-19. PK analysis included 84 of 110 participants randomized to receive i.m. AZD7442 and 16 of 61 randomized to receive i.v. AZD7442. Serum was collected prior to AZD7442 administration and at 24 hours and 3, 7, and 14 days later. PK parameters were calculated using noncompartmental methods. Following 600 mg i.m., the geometric mean maximum concentration (Cmax) was 38.19 μg/mL (range: 17.30–60.80) and 37.33 μg/mL (range: 14.90–58.90) for tixagevimab and cilgavimab, respectively. Median observed time to maximum concentration (Tmax) was 7.1 and 7.0 days for tixagevimab and cilgavimab, respectively. Serum concentrations after i.m. dosing were similar to the i.v. dose (27–29 μg/mL each component) at 3 days. The area under the concentration-time curve (AUC)0–7d geometric mean ratio was 0.9 for i.m. vs. i.v. Participants with higher weight or body mass index were more likely to have lower concentrations with either route. Women appeared to have higher interparticipant variability in concentrations compared with men. The concentrations of tixagevimab and cilgavimab after administration i.m. to the thigh were similar to those achieved with i.v. after 3 days from dosing. Exposure in the i.m. group was 90% of i.v. over 7 days. Administration to the thigh can be considered to provide consistent mAb exposure and improve access

    Modeling the emergence of viral resistance for SARS-CoV-2 during treatment with an anti-spike monoclonal antibody

    Get PDF
    To mitigate the loss of lives during the COVID-19 pandemic, emergency use authorization was given to several anti-SARS-CoV-2 monoclonal antibody (mAb) therapies for the treatment of mild-to-moderate COVID-19 in patients with a high risk of progressing to severe disease. Monoclonal antibodies used to treat SARS-CoV-2 target the spike protein of the virus and block its ability to enter and infect target cells. Monoclonal antibody therapy can thus accelerate the decline in viral load and lower hospitalization rates among high-risk patients with variants susceptible to mAb therapy. However, viral resistance has been observed, in some cases leading to a transient viral rebound that can be as large as 3-4 orders of magnitude. As mAbs represent a proven treatment choice for SARS-CoV-2 and other viral infections, evaluation of treatment-emergent mAb resistance can help uncover underlying pathobiology of SARS-CoV-2 infection and may also help in the development of the next generation of mAb therapies. Although resistance can be expected, the large rebounds observed are much more difficult to explain. We hypothesize replenishment of target cells is necessary to generate the high transient viral rebound. Thus, we formulated two models with different mechanisms for target cell replenishment (homeostatic proliferation and return from an innate immune response antiviral state) and fit them to data from persons with SARS-CoV-2 treated with a mAb. We showed that both models can explain the emergence of resistant virus associated with high transient viral rebounds. We found that variations in the target cell supply rate and adaptive immunity parameters have a strong impact on the magnitude or observability of the viral rebound associated with the emergence of resistant virus. Both variations in target cell supply rate and adaptive immunity parameters may explain why only some individuals develop observable transient resistant viral rebound. Our study highlights the conditions that can lead to resistance and subsequent viral rebound in mAb treatments during acute infection

    Safety and efficacy of inhaled interferon-β1a (SNG001) in adults with mild-to-moderate COVID-19: a randomized, controlled, phase II trial

    Get PDF
    Background: With the emergence of SARS-CoV-2 variants resistant to monoclonal antibody therapies and limited global access to therapeutics, the evaluation of novel therapeutics to prevent progression to severe COVID-19 remains a critical need. Methods: Safety, clinical and antiviral efficacy of inhaled interferon-β1a (SNG001) were evaluated in a phase II randomized controlled trial on the ACTIV-2/A5401 platform (ClinicalTrials.gov NCT04518410). Adult outpatients with confirmed SARS-CoV-2 infection within 10 days of symptom onset were randomized and initiated either orally inhaled nebulized SNG001 given once daily for 14 days (n = 110) or blinded pooled placebo (n = 110) between February 10 and August 18, 2021. Findings: The proportion of participants reporting premature treatment discontinuation was 9% among SNG001 and 13% among placebo participants. There were no differences between participants who received SNG001 or placebo in the primary outcomes of treatment emergent Grade 3 or higher adverse events (3.6% and 8.2%, respectively), time to symptom improvement (median 13 and 9 days, respectively), or proportion with unquantifiable nasopharyngeal SARS-CoV-2 RNA at days 3 (28% [26/93] vs. 39% [37/94], respectively), 7 (65% [60/93] vs. 66% [62/94]) and 14 (91% [86/95] vs. 91% [83/81]). There were fewer hospitalizations with SNG001 (n = 1; 1%) compared with placebo (n = 7; 6%), representing an 86% relative risk reduction (p = 0.07). There were no deaths in either arm. Interpretation: In this trial, SNG001 was safe and associated with a non-statistically significant decrease in hospitalization for COVID-19 pneumonia. Funding: The ACTIV-2 platform study is funded by the NIH. Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number UM1 AI068634, UM1 AI068636 and UM1 AI106701. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health

    Antiviral and clinical activity of bamlanivimab in a randomized trial of non-hospitalized adults with COVID-19

    Get PDF
    Anti-SARS-CoV-2 monoclonal antibodies are mainstay COVID-19 therapeutics. Safety, antiviral, and clinical efficacy of bamlanivimab were evaluated in the randomized controlled trial ACTIV-2/A5401. Non-hospitalized adults were randomized 1:1 within 10 days of COVID-19 symptoms to bamlanivimab or blinded-placebo in two dose-cohorts (7000 mg, n = 94; 700 mg, n = 223). No differences in bamlanivimab vs placebo were observed in the primary outcomes: proportion with undetectable nasopharyngeal SARS-CoV-2 RNA at days 3, 7, 14, 21, and 28 (risk ratio = 0.82-1.05 for 7000 mg [p(overall) = 0.88] and 0.81-1.21 for 700 mg [p(overall) = 0.49]), time to symptom improvement (median 21 vs 18.5 days [p = 0.97], 7000 mg; 24 vs 20.5 days [p = 0.08], 700 mg), or grade 3+ adverse events. However, bamlanivimab was associated with lower day 3 nasopharyngeal viral levels and faster reductions in inflammatory markers and viral decay by modeling. This study provides evidence of faster reductions in nasopharyngeal SARS-CoV-2 RNA levels but not shorter symptom durations in non-hospitalized adults with early variants of SARS-CoV-2

    Monoclonal antibody treatment drives rapid culture conversion in SARS-CoV-2 infection

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibodies (mAbs) are among the treatments recommended for high-risk ambulatory persons with coronavirus 2019 (COVID-19). Here, we study viral culture dynamics post-treatment in a subset of participants receiving the mAb bamlanivimab in the ACTIV-2 trial (ClinicalTrials.gov: NCT04518410). Viral load by qPCR and viral culture are performed from anterior nasal swabs collected on study days 0 (day of treatment), 1, 2, 3, and 7. Treatment with mAbs results in rapid clearance of culturable virus. One day after treatment, 0 of 28 (0%) participants receiving mAbs and 16 of 39 (41%) receiving placebo still have culturable virus (p < 0.0001). Recrudescence of culturable virus is detected in three participants with emerging mAb resistance and viral RNA rebound. While further studies are necessary to fully define the relationship between shed culturable virus and transmission, these results raise the possibility that mAbs may offer immediate (household) and public-health benefits by reducing onward transmission., Using longitudinal samples from the ACTIV-2 clinical trial of the monoclonal antibody bamlinivimab, Boucau et al. investigate the duration of shedding culturable virus. Treatment with monoclonal antibody results in rapid clearance of culturable virus. The emergence of mutations in a subset of participants coincides with viral rebound and resurgent culturable virus

    Efficacy and Safety of Three Antiretroviral Regimens for Initial Treatment of HIV-1: A Randomized Clinical Trial in Diverse Multinational Settings

    Get PDF
    Background:Antiretroviral regimens with simplified dosing and better safety are needed to maximize the efficiency of antiretroviral delivery in resource-limited settings. We investigated the efficacy and safety of antiretroviral regimens with once-daily compared to twice-daily dosing in diverse areas of the world.Methods and Findings:1,571 HIV-1-infected persons (47% women) from nine countries in four continents were assigned with equal probability to open-label antiretroviral therapy with efavirenz plus lamivudine-zidovudine (EFV+3TC-ZDV), atazanavir plus didanosine-EC plus emtricitabine (ATV+DDI+FTC), or efavirenz plus emtricitabine-tenofovir-disoproxil fumarate (DF) (EFV+FTC-TDF). ATV+DDI+FTC and EFV+FTC-TDF were hypothesized to be non-inferior to EFV+3TC-ZDV if the upper one-sided 95% confidence bound for the hazard ratio (HR) was ≤1.35 when 30% of participants had treatment failure.An independent monitoring board recommended stopping study follow-up prior to accumulation of 472 treatment failures. Comparing EFV+FTC-TDF to EFV+3TC-ZDV, during a median 184 wk of follow-up there were 95 treatment failures (18%) among 526 participants versus 98 failures among 519 participants (19%; HR 0.95, 95% CI 0.72-1.27; p = 0.74). Safety endpoints occurred in 243 (46%) participants assigned to EFV+FTC-TDF versus 313 (60%) assigned to EFV+3TC-ZDV (HR 0.64, CI 0.54-0.76; p<0.001) and there was a significant interaction between sex and regimen safety (HR 0.50, CI 0.39-0.64 for women; HR 0.79, CI 0.62-1.00 for men; p = 0.01). Comparing ATV+DDI+FTC to EFV+3TC-ZDV, during a median follow-up of 81 wk there were 108 failures (21%) among 526 participants assigned to ATV+DDI+FTC and 76 (15%) among 519 participants assigned to EFV+3TC-ZDV (HR 1.51, CI 1.12-2.04; p = 0.007).Conclusion: EFV+FTC-TDF had similar high efficacy compared to EFV+3TC-ZDV in this trial population, recruited in diverse multinational settings. Superior safety, especially in HIV-1-infected women, and once-daily dosing of EFV+FTC-TDF are advantageous for use of this regimen for initial treatment of HIV-1 infection in resource-limited countries. ATV+DDI+FTC had inferior efficacy and is not recommended as an initial antiretroviral regimen.Trial Registration:http://www.ClinicalTrials.gov NCT00084136
    corecore