21 research outputs found

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Vascularised fibular graft in the management of femoral head osteonecrosis: Twenty years later

    No full text
    The management of osteonecrosis of the femoral head ranges from symptomatic therapy to total hip replacement. Conservative treatment is effective only in small, early-stage lesions. Free vascularised fibular grafting has provided more consistently successful results than any other joint-preserving method. It supports the collapsing subchondral plate by primary callus formation, reduces intra-osseous pressure, removes and replaces the necrotic segment, and adds viable cortical bone graft plus fresh cancellous graft, which has osseoinductive and osseoconductive potential. Factors predisposing to success are the aetiology, stage and size of the lesion. Furthermore, it is a hip-salvaging procedure in early pre-collapse stages, and a time-buying one when the femoral head has collapsed. © 2009 British Editorial Society

    Vascular endothelial growth factor for the treatment of femoral head osteonecrosis: An experimental study in canines

    No full text
    AIM To evaluate the treatment of osteonecrosis of the femoral head (ONFH) with the use of vascular endothelial growth factor (VEGF). METHODS In 30 mature beagles (6 groups of 5 beagles) ONFH was induced cryosurgically and one of the following solutions was administered locally in the femoral head (FH) in each group: Single injection of 500 μg VEGF (t-VEGFμ group); single injection of 500 ng VEGF (t-VEGFn group); continuous delivery of 500 μg VEGF through osmotic micropump (t-VEGFpump-μ group); continuous delivery of 500 ng VEGF through osmotic micropump (t-VEGFpump-n group); single injection of 0.9% sodium chloride (t-NS group), while one group that served as control group did not receive any local solution (No-t group). FHs were retrieved 12 wk postoperatively, underwent decalcification and hematoxylin/eosin and toluidine blue staining. In two canines per group, one half of FH was processed without decalcification and stained with modified Masson Trichrome. Histological sections were observed by light microscopy and measured with a semi-automatized bone histomorphometry system and Bone Volume/Total Volume (BV/TV), Marrow Volume/ Total Volume (MaV/TV), and Trabecular Thickness (TbTh) were assessed. Standard and robust tests (Welch, Brown Forsythe) of analysis of variance along with multiple comparisons, were carried out among the categories. RESULTS The untreated (No-t) group had signs of osteonecrosis, whereas the VEGF groups revealed reversal of the osteonecrosis. Statistical analysis of the decalcified specimens revealed a significantly better BV/TV ratio and a higher TbTh between the VEGF treatment groups (except the t-VEGFn group) and the No-t group or the control t-NS group. Single dose 500 μgVEGF group had significantly better BV/TV ratio and higher TbTh when compared to the No-t group (50.45 ± 6.18 vs 29.50 ± 12.27, P = 0.002 and 151.44 ± 19.07 vs 107.77 ± 35.15, P = 0.161 respectively) and the control t-NS group (50.45 ± 6.18 vs 30.9 ± 6.67, P = 0.004 and 151.44 ± 19.07 vs 107.14 ± 35.71, P = 0.151 respectively). Similar differences were found for the prolonged VEGF delivery/pump groups of 500 μg and 500 ng. Analysis of the totality of specimens (decalcified/non-decalcified) enhanced the aforementioned differences and additionally revealed significant differences in the comparison of the TbTh. CONCLUSION In an experimental model of ONFH in canines it was found that local treatment with VEGF leads to bone tissue remodeling and new bone formation. © The Author(s) 2018
    corecore