297 research outputs found
Some Results of the Educational Experiment APIS (Cervantes Mission on Board ISS)
Some results of the analysis of the pictures taken along the performance of the Análisis de Propiedades Inerciales de Sólidos, Analysis of the Inertia Properties of Solid Bodies (APIS) experiment carried out in the Cervantes mission on board ISS, are presented. APIS was an educational experiment devoted to take advantage of the unique conditions of absence of relative gravity forces of a space platform such as ISS, to show some of the characteristics of the free rotational motion of a solid body, which are impossible to carry out on earth. This field of experimental research has application to aerospace engineering science (e.g. attitude control of spacecrafts), to astrophysical sciences (e.g. state of rotation and tumbling motions of asteroids) and to engineering education. To avoid the effect of the ambient atmosphere loads on the motion, the test body is placed inside a sphere, which reduces the effect of the aerodynamic forces to just friction. The drastic reduction of the effect of the surrounding air during the short duration of the experimental sequences allows us to compare the actual motion with the known solutions for the solid body rotation in vacuum. In this paper, some selected, relevant sequences of the sphere enclosing a body with a nominal cylindrical inertia tensor, put into rotation by the astronaut, are shown; the main problems to extract the information concerning the characteristic parameters of the motion are outlined, and some of the results obtained concerning the motion of the test probe are included, which show what seems to be a curious and unexpected solution of the Euler equations for the solid body rotation in vacuum, without energy dissipation, when the angular momentum is almost perpendicular to the axisymmetry axis
Evolution of the macroscopically entangled states in optical lattices
We consider dynamics of boson condensates in finite optical lattices under a
slow external perturbation which brings the system to the unstable equilibrium.
It is shown that quantum fluctuations drive the condensate into the maximally
entangled state. We argue that the truncated Wigner approximation being a
natural generalization of the Gross-Pitaevskii classical equations of motion is
adequate to correctly describe the time evolution including both collapse and
revival of the condensate.Comment: 14 pages, 10 figures, Discussion of reversibility of entanglement is
adde
Pattern of Kirtland's warbler occurrence in relation to the landscape structure of its summer habitat in northern Lower Michigan
Studies of the endangered Kirtland's warbler in relation to landscape ecosystems were conducted from 1986–1988 on a large wildfire-burn surrounding Mack Lake in southeastern Oscoda County, Michigan. A landscape ecosystem approach was used to distinguish low- and high-elevation segments of the landscape, as well as 11 local ecosystem types. The ecosystems were distinguished by physiography, microclimate, soil, and vegetation. The early occurrence of the warblers was strongly related to landscape structure, i.e. , to the broad low- and high-elevation areas and the local ecosystem types within them. Territories of male warblers were observed in 5 of the 11 ecosystems. The five ecosystem types where warblers were observed were characterized by (1) a physiography of level or rolling terrain; (2) soil series of Grayling, Graycalm, Montcalm, or Rubicon; (3) uplands with relatively warm temperature during the breeding season; (4) vegetation dominated by low sweet blueberry, bearberry, wintergreen, northern pin oak, blue stem grasses, and hair cap moss; and (5) canopy of relatively tall, dense, and patchy jack pine and oak. Landscape structure appears to be an important factor affecting the occurrence of the warbler in its summer habitat in northern Lower Michigan.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43161/1/10980_2004_Article_BF00129700.pd
Cardiac magnetic resonance stress perfusion imaging for evaluation of patients with chest pain
Background: Stress cardiac magnetic resonance imaging (CMR) has demonstrated excellent diagnostic and prognostic value in single-center studies. Objectives: This study sought to investigate the prognostic value of stress CMR and downstream costs from subsequent cardiac testing in a retrospective multicenter study in the United States. Methods: In this retrospective study, consecutive patients from 13 centers across 11 states who presented with a chest pain syndrome and were referred for stress CMR were followed for a target period of 4 years. The authors associated CMR findings with a primary outcome of cardiovascular death or nonfatal myocardial infarction using competing risk-adjusted regression models and downstream costs of ischemia testing using published Medicare national payment rates. Results: In this study, 2,349 patients (63 ± 11 years of age, 47% female) were followed for a median of 5.4 years. Patients with no ischemia or late gadolinium enhancement (LGE) by CMR, observed in 1,583 patients (67%), experienced low annualized rates of primary outcome (4-fold higher annual primary outcome rate and a >10-fold higher rate of coronary revascularization during the first year after CMR. Patients with ischemia and LGE both negative had low average annual cost spent on ischemia testing across all years of follow-up, and this pattern was similar across the 4 practice environments of the participating centers. Conclusions: In a multicenter U.S. cohort with stable chest pain syndromes, stress CMR performed at experienced centers offers effective cardiac prognostication. Patients without CMR ischemia or LGE experienced a low incidence of cardiac events, little need for coronary revascularization, and low spending on subsequent ischemia testing. (Stress CMR Perfusion Imaging in the United States [SPINS]: A Society for Cardiovascular Resonance Registry Study; NCT03192891)
- …