605 research outputs found

    A Quantum-Conceptual Explanation of Violations of Expected Utility in Economics

    Get PDF
    The expected utility hypothesis is one of the building blocks of classical economic theory and founded on Savage's Sure-Thing Principle. It has been put forward, e.g. by situations such as the Allais and Ellsberg paradoxes, that real-life situations can violate Savage's Sure-Thing Principle and hence also expected utility. We analyze how this violation is connected to the presence of the 'disjunction effect' of decision theory and use our earlier study of this effect in concept theory to put forward an explanation of the violation of Savage's Sure-Thing Principle, namely the presence of 'quantum conceptual thought' next to 'classical logical thought' within a double layer structure of human thought during the decision process. Quantum conceptual thought can be modeled mathematically by the quantum mechanical formalism, which we illustrate by modeling the Hawaii problem situation, a well-known example of the disjunction effect, and we show how the dynamics in the Hawaii problem situation is generated by the whole conceptual landscape surrounding the decision situation.Comment: 9 pages, no figure

    The Quark Propagator from the Dyson-Schwinger Equations: I. the Chiral Solution

    Full text link
    Within the framework of the Dyson-Schwinger equations in the axial gauge, we study the effect that non-perturbative glue has on the quark propagator. We show that Ward-Takahashi identities, combined with the requirement of matching perturbative QCD at high momentum transfer, guarantee the multiplicative renormalisability of the answer. Technically, the matching with perturbation theory is accomplished by the introduction of a transverse part to the quark-gluon vertex. We show that this transverse vertex is crucial for chiral symmetry breaking, and that massless solutions exist below a critical value of the strong coupling constant. Using the gluon propagator that we previously calculated, we obtain small corrections to the quark propagator, which keeps a pole at the origin in the chiral phase.Comment: 21 pages, 6 figures; McGill/94-24, SHEP 93/94-26 We generalise our results by showing that they are not sensitive to the specific choice that we make for the transverse vertex. We illustrate that fact in two new figure

    Towards T1-limited magnetic resonance imaging using Rabi beats

    Full text link
    Two proof-of-principle experiments towards T1-limited magnetic resonance imaging with NV centers in diamond are demonstrated. First, a large number of Rabi oscillations is measured and it is demonstrated that the hyperfine interaction due to the NV's 14N can be extracted from the beating oscillations. Second, the Rabi beats under V-type microwave excitation of the three hyperfine manifolds is studied experimentally and described theoretically.Comment: 6 pages, 8 figure

    Quantifying Entanglement Production of Quantum Operations

    Full text link
    The problem of entanglement produced by an arbitrary operator is formulated and a related measure of entanglement production is introduced. This measure of entanglement production satisfies all properties natural for such a characteristic. A particular case is the entanglement produced by a density operator or a density matrix. The suggested measure is valid for operations over pure states as well as over mixed states, for equilibrium as well as nonequilibrium processes. Systems of arbitrary nature can be treated, described either by field operators, spin operators, or any other kind of operators, which is realized by constructing generalized density matrices. The interplay between entanglement production and phase transitions in statistical systems is analysed by the examples of Bose-Einstein condensation, superconducting transition, and magnetic transitions. The relation between the measure of entanglement production and order indices is analysed.Comment: 20 pages, Revte

    Maxwell equations in matrix form, squaring procedure, separating the variables, and structure of electromagnetic solutions

    Full text link
    The Riemann -- Silberstein -- Majorana -- Oppenheimer approach to the Maxwell electrodynamics in vacuum is investigated within the matrix formalism. The matrix form of electrodynamics includes three real 4 \times 4 matrices. Within the squaring procedure we construct four formal solutions of the Maxwell equations on the base of scalar Klein -- Fock -- Gordon solutions. The problem of separating physical electromagnetic waves in the linear space \lambda_{0}\Psi^{0}+\lambda_{1}\Psi^{1}+\lambda_{2}\Psi^{2}+ lambda_{3}\Psi^{3} is investigated, several particular cases, plane waves and cylindrical waves, are considered in detail.Comment: 26 pages 16 International Seminar NCPC, May 19-22, 2009, Minsk, Belaru

    Classical Logical versus Quantum Conceptual Thought: Examples in Economics, Decision theory and Concept Theory

    Full text link
    Inspired by a quantum mechanical formalism to model concepts and their disjunctions and conjunctions, we put forward in this paper a specific hypothesis. Namely that within human thought two superposed layers can be distinguished: (i) a layer given form by an underlying classical deterministic process, incorporating essentially logical thought and its indeterministic version modeled by classical probability theory; (ii) a layer given form under influence of the totality of the surrounding conceptual landscape, where the different concepts figure as individual entities rather than (logical) combinations of others, with measurable quantities such as 'typicality', 'membership', 'representativeness', 'similarity', 'applicability', 'preference' or 'utility' carrying the influences. We call the process in this second layer 'quantum conceptual thought', which is indeterministic in essence, and contains holistic aspects, but is equally well, although very differently, organized than logical thought. A substantial part of the 'quantum conceptual thought process' can be modeled by quantum mechanical probabilistic and mathematical structures. We consider examples of three specific domains of research where the effects of the presence of quantum conceptual thought and its deviations from classical logical thought have been noticed and studied, i.e. economics, decision theory, and concept theories and which provide experimental evidence for our hypothesis.Comment: 14 page

    Output spectrum of a detector measuring quantum oscillations

    Full text link
    We consider a two-level quantum system (qubit) which is continuously measured by a detector and calculate the spectral density of the detector output. In the weakly coupled case the spectrum exhibits a moderate peak at the frequency of quantum oscillations and a Lorentzian-shape increase of the detector noise at low frequency. With increasing coupling the spectrum transforms into a single Lorentzian corresponding to random jumps between two states. We prove that the Bayesian formalism for the selective evolution of the density matrix gives the same spectrum as the conventional master equation approach, despite the significant difference in interpretation. The effects of the detector nonideality and the finite-temperature environment are also discussed.Comment: 8 pages, 6 figure

    Mining metrics for buried treasure

    Full text link
    The same but different: That might describe two metrics. On the surface CLASSI may show two metrics are locally equivalent, but buried beneath one may be a wealth of further structure. This was beautifully described in a paper by M.A.H. MacCallum in 1998. Here I will illustrate the effect with two flat metrics -- one describing ordinary Minkowski spacetime and the other describing a three-parameter family of Gal'tsov-Letelier-Tod spacetimes. I will dig out the beautiful hidden classical singularity structure of the latter (a structure first noticed by Tod in 1994) and then show how quantum considerations can illuminate the riches. I will then discuss how quantum structure can help us understand classical singularities and metric parameters in a variety of exact solutions mined from the Exact Solutions book.Comment: 16 pages, no figures, minor grammatical changes, submitted to Proceedings of the Malcolm@60 Conference (London, July 2004

    Chiral symmetry breaking, color superconductivity and color neutral quark matter: a variational approach

    Full text link
    We investigate the vacuum realignment for chiral symmetry breaking and color superconductivity at finite density in Nambu-Jona-Lasinio model in a variational method. The treatment allows us to investigate simultaneous formation of condensates in quark antiquark as well as in diquark channels. The methodology involves an explicit construction of a variational ground state and minimisation of the thermodynamic potential. Color and electric charge neutrality conditions are imposed through introduction of appropriate chemical potentials. Color and flavor dependent condensate functions are determined through minimisation of the thermodynamic potential. The equation of state is calculated. Simultaneous existence of a mass gap and superconducting gap is seen in a small window of quark chemical potential within the model when charge neutrality conditions are not imposed. Enforcing color and electric charge neutrality conditions gives rise to existence of gapless superconducting modes depending upon the magnitude of the gap and the difference of the chemical potentials of the condensing quarks.Comment: 13 pages, 6 figures,to appear in Phys. Rev.

    Warm stellar matter with deconfinement: application to compact stars

    Full text link
    We investigate the properties of mixed stars formed by hadronic and quark matter in β\beta-equilibrium described by appropriate equations of state (EOS) in the framework of relativistic mean-field theory. We use the non- linear Walecka model for the hadron matter and the MIT Bag and the Nambu-Jona-Lasinio models for the quark matter. The phase transition to a deconfined quark phase is investigated. In particular, we study the dependence of the onset of a mixed phase and a pure quark phase on the hyperon couplings, quark model and properties of the hadronic model. We calculate the strangeness fraction with baryonic density for the different EOS. With the NJL model the strangeness content in the mixed phase decreases. The calculations were performed for T=0 and for finite temperatures in order to describe neutron and proto-neutron stars. The star properties are discussed. Both the Bag model and the NJL model predict a mixed phase in the interior of the star. Maximum allowed masses for proto-neutron stars are larger for the NJL model (∼1.9\sim 1.9 M⨀_{\bigodot}) than for the Bag model (∼1.6\sim 1.6 M⨀_{\bigodot}).Comment: RevTeX,14 figures, accepted to publication in Physical Review
    • …
    corecore