23 research outputs found

    Correlation Testing in Nuclear Density Functional Theory

    Full text link
    Correlation testing provides a quick method of discriminating amongst potential terms to include in a nuclear mass formula or functional and is a necessary tool for further nuclear mass models; however a firm mathematical foundation of the method has not been previously set forth. Here, the necessary justification for correlation testing is developed and more detail of the motivation behind its use is give. Examples are provided to clarify the method analytically and for computational benchmarking. We provide a quantitative demonstration of the method's performance and short-comings, highlighting also potential issues a user may encounter. In concluding we suggest some possible future developments to improve the limitations of the method.Comment: Accepted to EPJ-

    The consequences of using indirect signs that decay to determine species' occupancy

    No full text
    Statistical models of species' distributions rely on data on species' occupancy, or use, of sites across space and/or time. For rare or cryptic species, indirect signs, such as dung, may be the only realistic means of determining their occupancy status across broad spatial extents. However, the consequences of sign decay for errors in estimates of occupancy have not previously been considered. If signs decay very rapidly, then false-negative errors may occur because signs at an occupied site have decayed by the time it is surveyed. On the other hand, if signs decay very slowly, false-positive errors may occur because signs remain present at sites that are no longer occupied. We addressed this issue by quantifying, as functions of sign decay and accumulation rates: 1) the false-negative error rate due to sign decay and, 2) the expected time interval prior to a survey within which signs indicate the species was present; as this time interval increases, false-positives become more likely. We then applied this to the specific example of koala Phascolarctos cinereus occupancy derived from faecal pellet surveys using data on faecal pellet decay rates. We show that there is a clear trade-off between false-negative error rates and the potential for false-positive errors. For the koala case study, false-negative errors were low on average and the expected time interval prior to surveys that detected pellets indicate the species was present within less than 2-3 yr. However, these quantities showed quite substantial spatial variation that could lead to biased parameter estimates for distribution models based on faecal pellet surveys. This highlights the importance of observation errors arising from sign decay and we suggest some modifications to existing methods to deal with this issue

    Out on a limb: habitat use of a specialist folivore, the koala, at the edge of its range in a modified semi-arid landscape

    No full text
    Habitat loss and natural catastrophes reduce the resources available to animals. Species can persist if they have access to additional resources and habitats through the processes of landscape complementation and supplementation. In arid and semi-arid ecosystems, where productivity is limited by precipitation, the impact of landscape change and prolonged drought is severe on specialist species whose range boundaries are limited by aridity. We examined the pattern of occurrence by a specialist arboreal folivore, the koala, at the periphery of its biogeographic range, in a semi-arid rangeland landscape. We used hierarchical mixed modelling to examine the effect of landscape change on koala populations and their habitat use during and after a prolonged drought. We found that the tree species and the distance of a site from water courses were the most important determinants for koala presence in these landscapes. Koalas were predominantly detected in riverine habitat along the water courses, which are primary habitat and provide refugia in times of drought and extreme heat. There was a strong positive effect from the interaction between the amount of primary and secondary habitat in the landscape, although individually, the amount of each of these habitats was not important. This shows koalas will persist in more intact landscapes. There was no difference in habitat use between dry and wet years, but we consider that it can take several wet seasons for koalas to expand into habitats away from water courses

    Physiological stress in koala populations near the arid edge of their distribution

    Get PDF
    Recent research has shown that the ecology of stress has hitherto been neglected, but it is in fact an important influence on the distribution and numbers of wild vertebrates. Environmental changes have the potential to cause physiological stress that can affect population dynamics. Detailed information on the influence of environmental variables on glucocorticoid levels (a measure of stress) at the trailing edge of a species’ distribution can highlight stressors that potentially threaten species and thereby help explain how environmental challenges, such as climate change, will affect the survival of these populations. Rainfall determines leaf moisture and/or nutritional content, which in turn impacts on cortisol concentrations. We show that higher faecal cortisol metabolite (FCM) levels in koala populations at the trailing arid edge of their range in southwestern Queensland are associated with lower rainfall levels (especially rainfall from the previous two months), indicating an increase in physiological stress when moisture levels are low. These results show that koalas at the semi-arid, inland edge of their geographic range, will fail to cope with increasing aridity from climate change. The results demonstrate the importance of integrating physiological assessments into ecological studies to identify stressors that have the potential to compromise the long-term survival of threatened species. This finding points to the need for research to link these stressors to demographic decline to ensure a more comprehensive understanding of species’ responses to climate change
    corecore