31 research outputs found

    Friction coefficient of a disk in a sheet of viscous fluid: numerical calculation

    Get PDF
    We study the class C of (generalized) orthogonal polynomial sequences {Pn(x)}n=0∞ satisfying a recurrence relation of the type Pn(x) = (x − cn)Pn−1(x) − λnPn−2(x), n> 1, where λn ≠ 0 and the sequence {λn+1/(cncn+1)}n=1∞ constitutes a chain sequence. We obtain a new characterization of C in terms of the moment sequence associated with an orthogonal polynomial sequence, and contribute to the solution of the problem of determining a (signed) orthogonalizing measure for a member of C

    Three-dimensional Ising model in the fixed-magnetization ensemble: a Monte Carlo study

    Full text link
    We study the three-dimensional Ising model at the critical point in the fixed-magnetization ensemble, by means of the recently developed geometric cluster Monte Carlo algorithm. We define a magnetic-field-like quantity in terms of microscopic spin-up and spin-down probabilities in a given configuration of neighbors. In the thermodynamic limit, the relation between this field and the magnetization reduces to the canonical relation M(h). However, for finite systems, the relation is different. We establish a close connection between this relation and the probability distribution of the magnetization of a finite-size system in the canonical ensemble.Comment: 8 pages, 2 Postscript figures, uses RevTe

    Diffusive Thermal Dynamics for the Ising Ferromagnet

    Full text link
    We introduce a thermal dynamics for the Ising ferromagnet where the energy variations occurring within the system exhibit a diffusive character typical of thermalizing agents such as e.g. localized excitations. Time evolution is provided by a walker hopping across the sites of the underlying lattice according to local probabilities depending on the usual Boltzmann weight at a given temperature. Despite the canonical hopping probabilities the walker drives the system to a stationary state which is not reducible to the canonical equilibrium state in a trivial way. The system still exhibits a magnetic phase transition occurring at a finite value of the temperature larger than the canonical one. The dependence of the model on the density of walkers realizing the dynamics is also discussed. Interestingly the differences between the stationary state and the Boltzmann equilibrium state decrease with increasing number of walkers.Comment: 9 pages, 14 figures. Accepted for publication on PR

    Physical tests for Random Numbers in Simulations

    Full text link
    We propose three physical tests to measure correlations in random numbers used in Monte Carlo simulations. The first test uses autocorrelation times of certain physical quantities when the Ising model is simulated with the Wolff algorithm. The second test is based on random walks, and the third on blocks of n successive numbers. We apply the tests to show that recent errors in high precision simulations using generalized feedback shift register algorithms are due to short range correlations in random number sequences. We also determine the length of these correlations.Comment: 16 pages, Post Script file, HU-TFT-94-

    Adsorption of Reactive Particles on a Random Catalytic Chain: An Exact Solution

    Full text link
    We study equilibrium properties of a catalytically-activated annihilation A+A→0A + A \to 0 reaction taking place on a one-dimensional chain of length NN (N→∞N \to \infty) in which some segments (placed at random, with mean concentration pp) possess special, catalytic properties. Annihilation reaction takes place, as soon as any two AA particles land onto two vacant sites at the extremities of the catalytic segment, or when any AA particle lands onto a vacant site on a catalytic segment while the site at the other extremity of this segment is already occupied by another AA particle. Non-catalytic segments are inert with respect to reaction and here two adsorbed AA particles harmlessly coexist. For both "annealed" and "quenched" disorder in placement of the catalytic segments, we calculate exactly the disorder-average pressure per site. Explicit asymptotic formulae for the particle mean density and the compressibility are also presented.Comment: AMSTeX, 27 pages + 4 figure

    Geometric cluster Monte Carlo simulation

    No full text
    corecore